第 11 題
若
x1
x2
x3
x4
x5皆為實數,且滿足














x1x2+x1x3+x1x4+x1x5=−2x2x1+x2x3+x2x4+x2x5=−2x3x1+x3x2+x3x4+x3x5=−2x4x1+x4x2+x4x3+x4x5=−2x5x1+x5x2+x5x3+x5x4=−2,則
x31+x32+x33+x34+x35之最大值為
。
[解答]
變數改成 a、b、c、d、e
ab + ac + ad + ae = -2
ba + bc + bd + be = -2
ca + cb + cd + ce = -2
da + db + dc + de = -2
ea + eb + ec + ed = -2
設 m = a + b + c + d + e
a(m - a) = -2
b(m - b) = -2
c(m - c) = -2
d(m - d) = -2
e(m - e) = -2
a(m - a) = b(m - b)
a = b 或 m = a + b,即 ab = -2
(1) 五數均不相等
則 ab = -2,bc = -2,a = c (不合)
(2) 五數均相等
則 4a^2 = -2 (不合)
(3) 恰有四數相等,令 b = c = d = e
則 4ab = -2,ab = -1/2 (不合)
(4) 有三數相等,令 c = d = e
則 ab + 3ac = -2,ab + 3bc = -2,a = b
a^2 + 3ac = -2,2ac + c^2 = -2
a^2 + 3ac = 2ac + 2c^2
a = -2c 或 a = c (不合)
4c^2 - 6c^2 = -2
c = 1 或 -1
a = -2 或 2
(a,b,c,d,e) = (2,2,-1,-1,-1) 或 (-2,-2,1,1,1)
a^3 + b^3 + c^3 + d^3 + e^3 = 13 或 -13
(5) 二同二同一異,令 a = b,c = d
a^2 + 2ac + ae = -2
2ac + c^2 + ce = -2
2ea + 2ec = -2
可求出 (a,b,c,d,e) = (1,1,-2,-2,1) 或 (-2,-2,1,1,1) 或 (2,2,-1,-1,-1) 或 (-1,-1,2,2,-1)
與 (4) 之解相同