20 12
發新話題
打印

106新竹高商

106新竹高商

初試最低錄取分數57。

附件

106新竹高商.pdf (761.03 KB)

2017-6-13 19:56, 下載次數: 9378

106新竹高商答案(填充第6題更正).pdf (121.63 KB)

2017-6-13 19:56, 下載次數: 11160

TOP

想問填7,填15,計1
謝謝

TOP

回復 2# litlesweetx 的帖子

填充第 7 題
在\(1、2、3、\ldots、2017\)中取一組數,使任意兩數的和不能被其差整除,則最多能取   個數。
[解答]
取除以 3 餘 1 的數
所求 = [2017/3] + 1 = 673


填充第 15 題
將四位數1746(原數)左右倒過來寫得6471(新數),新數比原數大4725。試問:滿足新數比原數大4725的所有四位數的原數有   個。
[解答]
原數 1000a + 100b + 10c + d,新數 1000d + 100c + 10b + a
(1000d + 100c + 10b + a) - (1000a + 100b + 10c + d) = 4725
111(d - a) + 10(c - b) = 525
易知 d - a = 5,b - c = 3
d 有 6 ~ 9 這 4 種情形,b 有 3 ~ 9 這 7 種情形
所求 = 4 * 7 = 28

TOP

計1.補充

由答案看來,(0,0),(12c,4\( \sqrt{3} \)c),(12c,-4\( \sqrt{3} \)c),之重心(8c,0)為頂點,
原圖形向右平移8c,再上下壓縮1/3,即得所求圖形
此題若為填充題,這樣猜答案也滿合理的
此題若改為橢圓,是否仿上法得四頂點的橢圓也為所求圖形呢?
此題若改為左右型雙曲線,是否仿上法得兩頂點的雙曲線,再上下壓縮1/3也為所求圖形呢?

TOP

填充4
已知\(m\)、\(n\)為正整數且\(m^2<7n^2\),求\(7n^2-m^2\)的最小值   
[解答]
應該還有其它更適當的解釋方法!
\(
\begin{array}{l}
因為7n^2  - m^2  > 0 \\
取m=n-2,7n^2  - (n - 2)^2  = 6n^2  + 4n + 4 \ge 14 \\
取m=n-1,7n^2  - (n - 1)^2  = 6n^2  + 2n - 1 \ge 7 \\
取m=n ,7n^2  - n^2  = 6n^2  \ge 6 \\
取m=n+1 ,7n^2  - (n + 1)^2  = 6n^2  - 2n - 1 \ge 3 \\
取m=n+2,7n^2  - (n + 2)^2  = 6n^2  - 4n - 4 \ge 12 \\
....
\end{array}
\)

填充6
請問滿足\(\displaystyle \frac{1}{x}+\frac{1}{y}=\frac{1}{6^6}\)的正整數解共有   組。
[解答]
\(
H_{12}^2  \times H_{12}^2  = 169
\)

填充10
今有16枝相同的筆要全部分給\(A\)、\(B\)、\(C\)、\(D\)四人,每人至少分得一枝,若僅考慮四人所獲得筆的數量,則共有   種分筆的方式使得\(A\)獲得的數量大於\(B\)獲得的數量。
[解答]
\(
\displaystyle \frac{{H_{12}^4  - (H_0^2  + H_2^2  + ... + H_{12}^2 )}}{{\rm{2}}} = 203
\)

填充13
圓\(C\)的圓心為\((a,1)\),且半徑為1,作圓\(C\)的兩條切線\(L_1\)、\(L_2\),已知\(L_1⊥L_2\),且\(L_1\)、\(L_2\)和\(x\)軸的交點分別為\((-2,0)\)、\((2,0)\),求\(a\)的值為   
[解答]
https://math.pro/db/thread-2632-1-1.html

填充14
設\(a\)、\(b\)、\(c\)為正實數,且\(a+b+c=1\),求\(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)之最小值為   
[解答]
\(
\begin{array}{l}
\displaystyle  \sqrt {a^2  + b^2 }  + \sqrt {b^2  + c^2 }  + \sqrt {c^2  + a^2 }  \\
\displaystyle  \ge 3 \times \sqrt[3]{{\sqrt {a^2  + b^2 }  \times \sqrt {b^2  + c^2 }  \times \sqrt {c^2  + a^2 } }} \\
\displaystyle  \ge 3 \times \sqrt[3]{{\sqrt {2ab}  \times \sqrt {2bc}  \times \sqrt {2ca} }} = 3\sqrt 2  \times \sqrt[3]{{abc}} \\
又\displaystyle a + b + c \ge 3 \times \sqrt[3]{{abc}} \\
兩式相除即最小值為\sqrt 2,等號成立於a=b=c=1/3
\end{array}
\)

填充16
對於每一正整數\(n\),\(f(n)+f(n+3)=n^2\)恆成立,若\(f(93)=93\),求\(f(30)=\)   
[解答]
\(
\begin{array}{l}
f(93) + f(30) = 90^2  - 87^2  + 84^2  - 81^2  + ... - 33^2  + 30^2  = 4590 \\
f(30) = 4497 \\
\end{array}
\)

填充18
已知\(2x+y+2=0\),試求\(\displaystyle log_2 \frac{y}{x^2}\)的最大值為   
[解答]
\(
\left\{ \begin{array}{l}
令 y = ax^2  \\
2x + y + 2 = 0 \\
\end{array} \right.
當相切時有最大值,此時a=1/2
\)

TOP

填充6的答案是否公布有誤

請教各位,填充6是仿全國的題型,
可是公布答案是49,是否有誤?
謝謝。

TOP

回復 6# 小姑姑 的帖子

應是 169 才是

TOP

回復 3# thepiano 的帖子

小弟不才,想請教thepiano大大第七題的解題構思是如何引入的呢?

TOP

回復 8# eyeready 的帖子

eyeready 大大客氣了

由於要取最多的數,任兩數之間的差越小越好
差 1 不合題意,差 2 的話,任兩數之和是偶數,也不合題意
所以就差 3

都取除以 3 餘 1 的數,任兩數之和除以 3 餘 2,任兩數之差是 3 的倍數,符合題意

TOP

回復 6# 小姑姑 的帖子

官方公布更改後填充第 6 題的答案為 169
http://www.hccvs.hc.edu.tw

TOP

 20 12
發新話題