回復 1# Superconan 的帖子
填充第4題
易知該橢圓為\(\frac{{{x}^{2}}}{16}+\frac{{{y}^{2}}}{12}=1\)
令\(P\left( 4\cos \theta ,2\sqrt{3}\sin \theta \right),M\left( m,0 \right),-4\le m\le 4\)
當\(\overline{MP}\)最小時,\(P\left( 4,0 \right)\),此時\(\overline{MP}=4-m\)
\(\begin{align}
& {{\overline{MP}}^{2}}={{\left( 4\cos \theta -m \right)}^{2}}+{{\left( 2\sqrt{3}\sin \theta \right)}^{2}}\ge {{\left( 4-m \right)}^{2}} \\
& m\ge \frac{1+\cos \theta }{2} \\
& m\ge 1 \\
\end{align}\)
故所求為\(1\le m\le 4\)
[ 本帖最後由 thepiano 於 2017-4-30 00:10 編輯 ]