填充8.
求\(\langle\;a_n \rangle\;\)一般式,\( \Bigg\{\; \matrix{\displaystyle a_1=0 \cr a_n=-\frac{a_{n-1}+6}{a_{n-1}+4},n \ge 2} \)。
更多類題在
https://math.pro/db/viewthread.php?tid=680&page=2#pid2434
[提示]
令\( \displaystyle x=-\frac{x+6}{x+4} \),\( x=-2,-3 \)
\( \displaystyle \frac{a_n+2}{a_n+3}=\frac{-\frac{a_{n-1}+6}{a_{n-1}+4}+2}{-\frac{a_{n-1}+6}{a_{n-1}+4}+3}=\frac{1}{2}\cdot \frac{a_{n-1}+2}{a_{n-1}+3}=\left(\frac{1}{2} \right)^2 \cdot \frac{a_{n-2}+2}{a_{n-2}+3}=\ldots=\left( \frac{1}{2} \right)^{n-1}\frac{a_1+2}{a_1+3}=\frac{2}{3} \cdot \left( \frac{1}{2}\right)^{n-1} \)
計算2.
方程式\((x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0\)之二根為\(\alpha,\beta\)其中\(a,b,c\)皆相異,求\(\displaystyle \frac{a^4}{(a-\alpha)(a-\beta)}+\frac{b^4}{(b-\alpha)(b-\beta)}+\frac{c^4}{(c-\alpha)(c-\beta)}\)之值(用\(a,b,c\)表示)
設\( a+b+c=3 \),\( a^2+b^2+c^2=45 \)
(1)求\( \displaystyle \frac{a^2}{(a-b)(a-c)}+\frac{b^2}{(b-a)(b-c)}+\frac{c^2}{(c-a)(c-b)}= \)?
(2)求\( \displaystyle \frac{a^4}{(a-b)(a-c)}+\frac{b^4}{(b-a)(b-c)}+\frac{c^4}{(c-a)(c-b)}= \)?
(102中正高中,
https://math.pro/db/viewthread.php?tid=1576&page=1#pid7884)
[
本帖最後由 bugmens 於 2016-5-16 11:40 PM 編輯 ]