回復 2# jyi 的帖子
設角BCA=角BAC=x度,則角B=(180-2x)度,角BDC=(2x-50)度(25<x<50),
由正弦定理知(BD=AC=2BCcosx度)/sin50度=BC/sin(2x-50)度
=>2cosx度sin(2x-50)度=sin50度,x=40 顯然是一解,
現在證明它是唯一解如下:
令f(x)=cosx度sin(2x-50)度, 25<x<50
f`(x)=-sinx度sin(2x-50)度+cosx度cos(2x-50)度*2
=cosx度cos(2x-50)度*(2-tanx度tan(2x-50)度)
因為0<x,2x-50<50,tan50度=1.192
或(tan50度<tan(45+60)/2度<(tan45度+tan60度)/2=1.366),
顯然f`恆>0=>f是絕對遞增函數,故x=40 顯然是唯一解
=>角B=(180-2x)度=100度
[ 本帖最後由 laylay 於 2017-5-13 09:30 編輯 ]