回復 5# g112 的帖子
計算第2題
設\(f\left( x \right)=a{{x}^{3}}+b{{x}^{2}}+cx+d\quad \left( a\ne 0 \right)\)
\(\begin{align}
& f'\left( x \right)=3a{{x}^{2}}+2bx+c \\
& f\left( x \right)=\left( 3a{{x}^{2}}+2bx+c \right)\left( \frac{1}{3}x+\frac{b}{9a} \right)+\left[ \left( \frac{2}{3}c-\frac{2{{b}^{2}}}{9a} \right)x+\left( d-\frac{bc}{9a} \right) \right] \\
\end{align}\)
由於餘式是常數
\(\begin{align}
& \frac{2}{3}c-\frac{2{{b}^{2}}}{9a}=0 \\
& {{b}^{2}}-3ac=0 \\
\end{align}\)
若\(f\left( x \right)\)之圖形與x軸有三個交點,則\(f'\left( x \right)=3a{{x}^{2}}+2bx+c=0\)有兩相異實根,即\({{b}^{2}}-3ac>0\)
故\({{b}^{2}}-3ac=0\)時,\(f\left( x \right)=0\)僅有一實根,其圖形與與x軸的交點只有一個