題目請參考美夢成真網站
http://www.shiner.idv.tw/teachers/viewtopic.php?f=53&t=2530
先把會的寫下來
11題
有外角平分線,欲證之式又是調和型式,所以想到調和點列。
作角BAC的平分線交BC於D,那麼(B、C;D、E)為調和點列,所以有
\(\displaystyle \frac{1}{BE}+\frac{1}{CE}=\frac{2}{DE} \)
連接\(\displaystyle ND_1 \),因為\(\displaystyle AD_1 \)為直徑,所以
\(\displaystyle \angle{AND_1}=90^o \)
\(\displaystyle \angle{AMN}=\angle{AD_1N} \)
\(\displaystyle \angle{MAP}=90^o-\angle{AMN}=90^o-\angle{AD_1N}=\angle{D_1AN} \)
所以AD也是\(\displaystyle \angle{D_1AD_2} \)的內角平分線
而AE和AD垂直,所以AE是\(\displaystyle \angle{D_1AD_2} \)的外角平分線
同樣有\(\displaystyle D_1、D_2;D、E \)為調和點列
\(\displaystyle \frac{1}{D_1E}+\frac{1}{D_2E}=\frac{2}{DE} \)
故得證
註一
(B、C;D、E)為調和點列的證明
內分比\(\displaystyle \frac{BD}{DC}=\frac{BA}{AC} \)
外分比\(\displaystyle \frac{BE}{EC}=\frac{BA}{AC} \)
故\(\displaystyle \frac{BD}{DC}=\frac{BE}{EC} \)
註二
調和點列形成調和數列的證明
由\(\displaystyle \frac{BD}{DC}=\frac{BE}{EC} \)
我們令\(\displaystyle BE=x,C=y,DE=z \),上式可以寫為
\(\displaystyle \frac{x-z}{z-y}=\frac{x}{y} \)
\(\displaystyle xz-xy=xy-yz \)
\(\displaystyle yz+xz=2xy \)
\(\displaystyle \frac{1}{x}+\frac{1}{y}=\frac{2}{z} \)
這也就是調和點列名稱的由來
事實上從任一點到另外三點所成的三個線段,都形成調和數列,但是要注意方向。
[
本帖最後由 老王 於 2011-6-7 08:18 PM 編輯 ]