填充 2
設\(D\)為\(\Delta ABC\)內一點使得\(\angle ACD=\angle ABD\),且\(\angle ADB=90^{\circ}\),\(M\)為\(\overline{BC}\)的中點。已知\(\overline{AB}=12\),\(\overline{AC}=8\),則\(\overline{DM}=\)
。
[解答]
自問自答一下
做 \( \triangle ABD \) 的外接圓,其圓心為 \(E\),將此圓對 \(\overline{AD}\) 作對稱。
以\( '\)表示之,則 \(D\) 為 \(\overline{BB'}\) 中點,又 M 為 \(\overline{BC}\) 中點,
而由 \( \angle ABD = \angle ACD \),得 \(C\) 兩圓上,且不在 \(AD\) 劣弧上。再由 \(D\) 是內部點的條件,可知是右邊下方的 \( BD \)弧上
所以 \( \overline{DM}=\frac{1}{2}\overline{B'C}=\frac{1}{2}\sqrt{12^{2}-8^{2}}=2\sqrt{5} \)