Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath
發新話題
打印

要如何證明1+1/2+1/3+…+1/n-log(n)收斂?

要如何證明1+1/2+1/3+…+1/n-log(n)收斂?

如題,及如何估計此尤拉常數?

[ 本帖最後由 larson 於 2013-2-26 10:28 PM 編輯 ]

TOP

回復 1# larson 的帖子

f(x)=x11[x]+1, x0。則 f(x) 恆正。

1nf(x)dx=1nx1dx1n1[x]+1dx=logn21+31++n1 

f(x) 恆正知上式遞增

f(x)=x([x]+1)[x]+1x1x2,又 11x2dx 

由比較判別法知 1f(x)dx  收斂,故 logn21+31++1n  收斂 (或遞增有上界得收斂)

因此原數列亦收斂
網頁方程式編輯 imatheq

TOP

回復 2# tsusy 的帖子

謝謝,還是有些難懂!

TOP

Recall the double inequality 1+n1ne1+n1n+1 n1.
Taking the natural logarithm, we obtain nln1+n11(n+1)ln1+n1 
which yields the double inequality 1n+1ln(n+1)lnnn1.
Applying the one on the right, we find that anan1=n1ln(n+1)+lnn0,for n2,
so the sequence is increasing. Adding the inequalities
1121ln2ln131ln3ln21nlnnln(n1)
we obtain 1+21+31++n11+lnn1+ln(n+1).
Therefore, an1, for all n. We found that the sequence is increasing and bounded, hence convergent.

出自Putnam and Beyond第473頁
http://www.google.com/search?q=P ... chrome&ie=UTF-8

[ 本帖最後由 bugmens 於 2013-3-7 08:54 PM 編輯 ]

TOP

發新話題
最近訪問的版塊