第 5 題:
設 \(z_1,\, z_2\) 為複數,滿足 \(\left|z_1\right|=\left|z_2\right|\),且 \(z_1-z_2=1-2i\),求 \(\displaystyle\frac{z_1\cdot z_2}{\left|z_1\cdot z_2\right|}\) 之值.
解答:
令 \(z_1=r\left(\cos\alpha+i\sin\alpha\right),\; z_2=r\left(\cos\beta+i\sin\beta\right)\),則
由 \(z_1-z_2=1-2i\),可得
\(\displaystyle \left\{\begin{array}{ccc}r\left(\cos\alpha-\cos\beta\right)&=&1\\r\left(\sin\alpha-\sin\beta\right)&=&-2\end{array}\right.\)
將兩式相除,再用和差化積,可得 \(\displaystyle\tan\left(\frac{\alpha+\beta}{2}\right)\) 之值,
再利用
切表弦公式(也有人稱萬能公式),可得 \(\cos\left(\alpha+\beta\right)\) 與 \(\sin\left(\alpha+\beta\right)\) 之值,
故,可得 \(\displaystyle\frac{z_1\cdot z_2}{\left|z_1\cdot z_2\right|}=\frac{z_1\cdot z_2}{\left|z_1\right|\cdot\left| z_2\right|}=\cos\left(\alpha+\beta\right)+i\sin\left(\alpha+\beta\right) \) 之值.