引用:
原帖由 skuld 於 2013-4-27 08:08 PM 發表
還有一題是:a、b、c為自然數且1/a + 1/b +1/c =1 求a、b、c的解想請問這題要怎麼解?
我這題是用湊的,只湊到3組解(分別是3,3,3、4,4,2、6,3,2),但不知道怎麼列式&是否還有其他的解...
謝謝! ...
不失一般性,可假設 \(a\geq b\geq c\geq 1\),則 \(\displaystyle 0<\frac{1}{a}\leq\frac{1}{b}\leq\frac{1}{c}\leq1\)
\(\displaystyle \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\leq\frac{1}{c}+\frac{1}{c}+\frac{1}{c}\)
\(\displaystyle \Rightarrow 1\leq\frac{3}{c}\)
\(\Rightarrow c\leq3\)
\(\Rightarrow c=1\), \(2\), or \(3\)
case 1: 若 \(c=1\) 則 \(\displaystyle \frac{1}{a}+\frac{1}{b}=0\Rightarrow\) 不合
case 2: 若 \(c=2\) 則 \(\displaystyle \frac{1}{a}+\frac{1}{b}=\frac{1}{2}\)
\(\displaystyle \Rightarrow \frac{1}{a}+\frac{1}{b}\leq\frac{1}{b}+\frac{1}{b}\)
\(\displaystyle \Rightarrow \frac{1}{2}\leq\frac{2}{b}\)
\(\Rightarrow b\leq 4\)
且由 \(b\geq c\),可知 \(b=3\) or \(4\)
若 \(b=3\),則 \(a=6\)
若 \(b=4\),則 \(a=4\)
case 3: 若 \(c=3\) 則 \(\displaystyle \frac{1}{a}+\frac{1}{b}=\frac{2}{3}\)
\(\displaystyle \Rightarrow \frac{1}{a}+\frac{1}{b}\leq\frac{1}{b}+\frac{1}{b}\)
\(\displaystyle \Rightarrow \frac{2}{3}\leq\frac{2}{b}\)
\(\Rightarrow b\leq 3\)
且由 \(b\geq c\),可知 \(b=3\),因此 \(a=3\)
因此,滿足題意的有序數組 \((a,b,c)\) 只有 \((3,3,3), (2,3,6), (2,6,3), (3,2,6), (3,6,2), (6,2,3), (6,3,2), (2,4,4),(4,2,4),\) 或 \((4,4,2)\)