6.
若\( \displaystyle secx+tanx=\frac{22}{7} \),則\( cscx+cotx \)之值為?
Suppose that \( \displaystyle secx+tanx=\frac{22}{7} \) and that \( \displaystyle cscx+cotx=\frac{m}{n} \), where \( \displaystyle \frac{m}{n} \) is in lowest terms. Find \( m+n \).
(1991AIME,
http://www.artofproblemsolving.c ... id=45&year=1991)
10.
現有一隻青蛙在一個正三角形的三頂點間跳動,每次跳動可隨機由一頂點跳到其他兩個頂點中的一個。若此青蛙從某一個頂點開始跳動,則經過12次跳動後會回到原來的頂點之機率為?
一隻蟲從一有k個點的完全圖的一點出發。在每次移動時,它隨機選擇其它\( k-1 \)個點中的任一個點,並且沿著線段爬行到那個頂點。求此蟲子經過n次移動後,回到它一開始出發的點的機率。
(991中山大學雙週一題第4題)
機率\( \displaystyle =\frac{1-(1-k)^{1-n}}{k} \)
\( k=3,n=12代入 \)得到機率\( \displaystyle \frac{683}{2048} \)
12.
在坐標平面上,有一直角△ABC,以∠C為直角,\( \overline{AD},\overline{BE},\overline{CF} \)為△ABC之三中線,已知\( \overline{AD} \)落在直線\( 2x+y=5 \)上,\( \overline{BE} \)落在直線\( x+2y=1 \)上,\( \overline{AB}=30 \),則△ABC的面積為?
令三角形ABC為在xy平面上的直角三角形,其中∠C為直角。給定斜邊\( \overline{AB} \)的長度為60,且穿過A與B的中線分別為\( y=x+3 \)與\( y=2x+4 \),試求三角形ABC的面積。
(102中山大學雙週一題第2題)
[
本帖最後由 bugmens 於 2014-4-26 09:56 PM 編輯 ]