1.
\(A,B\)為拋物線\(y^2=4(x-1)\)上兩點且\(\overline{AB}=6\),則求\(\overline{AB}\)中點\(M\)到\(y\)軸距離的最小值?
2.
如圖,已知一短軸在\(x\)軸上,中心\(O\)在原點的橢圓,\(A\)為短軸的一端點,\(B,P\)分別為短軸,橢圓上的點,且\(∠ABP=90^{\circ}\),若\(\overline{AP}=10,\overline{BP}=6\)且\(\overline{PO}\)平分\(∠APB\),求此橢圓方程式?
3.
設點\(P\)在橢圓\(\displaystyle \Gamma:\frac{x^2}{16}+\frac{y^2}{9}=1\)上,\(F_1,F_2\)為兩焦點,且\(∠F_1PF_2=60^{\circ}\),則求與橢圓\(\Gamma\)共焦點,且過\(P\)點之雙曲線方程式?