回復 1# chwjh32 的帖子
先附三個類題,這三個類題是點 Q 在橢圓內,求相加,但做法一樣,就是利用到兩焦點距離和 \( = 2a \) 及三角不等式
已知點 P 為橢圓 \( \frac{x^{2}}{64}+\frac{y^{2}}{28}=1 \) 上的點, \( A(6,0)\,,B(-3,4) \),求 \( \overline{PA}+\overline{PB} \) 的最小值為? (100玉井工商)
坐標平面上,已知點 A(4,0) 和 B(3,3),P 是橢圓 \( \frac{x^{2}}{36}+\frac{y^{2}}{20}=1 \) 上的動點,則 \( \overline{PA}+\overline{PB} \) 的最小值為 __________。 (100彰化女中)
\( \Gamma:\,\frac{x^{2}}{16}+\frac{y^{2}}{7}=1 \), \( F(3,0), A(-3,1) \),P 在 \( \Gamma \) 上,設 \( \overline{PA}+\overline{PF} \) 最大值 M,最小值 m,則 (M,m)=_________。 (99建中市內)
此題解答:
橢圓 \( \Gamma: \frac{x^2}{7} + \frac{y^2}{16} =1 \) 中,\( F \) 為焦點,其 \( y \) 坐標為正。\( P(x,y) \) 為 \( \Gamma \) 上的動點要 \( Q(6,5) \)。試求 \( \overline{PQ} - \overline{PF} \) 的最小值 __________
解:兩焦點 \( F(0,3), F'(0,-3) \),\( \overline{PF} = 8 - \overline{PF'} \)。
\( \overline{PQ} - \overline{PF} = \overline{PQ} + \overline{PF'} - 8 \geq \overline{QF'} - 8 = 10 - 8 =2 \)
當 \( P \) 為 \( \overline{QF'} \) 與 \( \Gamma \) 的交點時,達最小值 2。