回復 1# shmilyho 的帖子
上面已有一般化的好方法了,
但這題其實直接乘一乘就好了!!
\( A=\begin{bmatrix}3 & 0\\
2 & 1
\end{bmatrix} \)
\( A^{2}=\begin{bmatrix}3 & 0\\
2 & 1
\end{bmatrix}\begin{bmatrix}3 & 0\\
2 & 1
\end{bmatrix}=\begin{bmatrix}9 & 0\\
8 & 1
\end{bmatrix} \)
\( A^{3}=\begin{bmatrix}9 & 0\\
8 & 1
\end{bmatrix}\begin{bmatrix}3 & 0\\
2 & 1
\end{bmatrix}=\begin{bmatrix}27 & 0\\
26 & 1
\end{bmatrix} \)
\( A^{4}=\begin{bmatrix}27 & 0\\
26 & 1
\end{bmatrix}\begin{bmatrix}3 & 0\\
2 & 1
\end{bmatrix}=\begin{bmatrix}81 & 0\\
80 & 1
\end{bmatrix} \)
易知(或由數學歸納法證明之) \( \begin{bmatrix}3^{n} & 0\\
3^{n}-1 & 1
\end{bmatrix} \)