((畫張圖,希望有幫助理解。))
然後來個另解,
\(\displaystyle \left|a+b\right|=\left|a-b\right|\)
\(\displaystyle \Rightarrow \left|a+b\right|^2=\left|a-b\right|^2\)
\(\displaystyle \Rightarrow \left(a+b\right)\overline{\left(a+b\right)}=\left(a-b\right)\overline{\left(a-b\right)}\)
\(\displaystyle \Rightarrow \left(a+b\right)\left(\overline{a}+\overline{b}\right)=\left(a-b\right)\left(\overline{a}-\overline{b}\right)\)
\(\displaystyle \Rightarrow a\overline{a}+a\overline{b}+\overline{a}b+b\overline{b}=a\overline{a}-a\overline{b}-\overline{a}b+b\overline{b}\)
\(\displaystyle \Rightarrow a\overline{b}=- \overline{a}b\)
因為 \(b\) 非零,
\(\displaystyle \Rightarrow \frac{a}{b}=- \frac{\overline{a}}{\overline{b}}\)
\(\displaystyle \Rightarrow \frac{a}{b}=- \overline{\left(\frac{a}{b}\right)}\)
且因為 \(a\) 非零,所以 \(\displaystyle \frac{a}{b}\) 為純虛數。