回復 1# larson 的帖子
充分條件(如果是把任意直線都對到直線,則是充要條件)
概要證明,假設直線參數式,寫成矩陣 \( \begin{bmatrix}x\\
y
\end{bmatrix}=\begin{bmatrix}a\\
b
\end{bmatrix}+t\begin{bmatrix}p\\
q
\end{bmatrix}
, t\in\mathbb{R}
, p^{2}+q^{2}\neq0 \) .
乘 \( A \) 之後,可得新的坐標為 \( \begin{bmatrix}a'\\
b'
\end{bmatrix}+t\begin{bmatrix}p'\\
q'
\end{bmatrix} \),其中 \( \begin{bmatrix}p'\\
q'
\end{bmatrix}=A\begin{bmatrix}p\\
q
\end{bmatrix} \) .
因 \( \det(A) \neq 0 \) 可推得 \( \begin{bmatrix}p'\\
q'
\end{bmatrix} \neq \begin{bmatrix}0\\
0
\end{bmatrix} \) ,
所以 \( \begin{bmatrix}a'\\
b'
\end{bmatrix}+t\begin{bmatrix}p'\\
q'
\end{bmatrix} \) 是一條直線的參數式.