這個問題我最先在這篇看到,那時我花了很多時間在圖書館找資料
h ttp://forum.nta.org.tw/examservice/showthread.php?t=43158 連結已失效
在"幾何學辭典"P607有提到這個問題,當∠OPA=∠OPB時PA+PB就有最小值
只是沒提到這個P點要怎麼作出來
直到昨天又看到相同的問題,我改用英文關鍵字(Alhazen's problem)來搜尋
http://en.wikipedia.org/wiki/Alhazen#Alhazen.27s_problem
http://en.wikipedia.org/wiki/Book_of_Optics#Alhazen.27s_problem
也找到用複數解法來找P點
Another view of alhazen's optical problem.pdf從第5頁開始
Trisections and Totally Real Origami.pdf從第13頁開始
我以第一個pdf檔所描述的公式,搭配本題的條件來找P點的位置
公式是將圓放在原點上,故將A,B移到(3,-1),(5,-1)
以複數來看A(3-i),B(5-i),AB=14-8i,A+B=8-2i
雙曲線\( p(x^2-y^2)-2qxy=sx-ry \)的各項係數
p=Im(ab)=-8,q=Re(ab)=14,r=Re(a+b)=8,s=Im(a+b)=-2
得到\( 4x^2+14xy-4y^2-x-4y=0 \)再和圓方程式\( x^2+y^2=1 \)解出P點