題目: 圓內接正五邊形\(ABCDE\),圓心\(O\),若圓半徑\(1\),求向量\(\vec{AB}+\vec{AC}+\vec{AD}+\vec{AE}\)的長度=?
解答:
如圖:\(\vec{AB}+\vec{AC}+\vec{AD}+\vec{AE}=2\left(\vec{AF}+\vec{AG}\right)\)
所求=\(2\left(\overline{AF}+\overline{AG}\right)\)
\(=2\left(2\cos^2 54^\circ+2\cos^2 18^\circ\right)\)
\(\displaystyle=2\left(2\cdot\frac{1+\cos108^\circ}{2}+2\cdot\frac{1+\cos36^\circ}{2}\right)\)
\(=2\left(2+\cos108^\circ+\cos36^\circ\right)\)
\(=2\left(2-\sin18^\circ+\cos36^\circ\right)\)
\(\displaystyle=2\left(2-\frac{\sqrt{5}-1}{4}+\frac{\sqrt{5}+1}{4}\right)\)
\(=5\)