回復 1# thankyou 的帖子
題目:四邊形 ABCD,\overline{AB}=16, \overline{BC}=25, \overline{CD}=15,\angle ABC, \angle BCD 皆為銳角,且\displaystyle\sin\angle ABC=\frac{24}{25}, \sin\angle BCD=\frac{4}{5},求 \overline{AD} 之值?
解答:
\displaystyle\cos\angle ABC = \sqrt{1-\sin^2\angle ABC}=\frac{7}{25}
\displaystyle\cos\angle BCD = \sqrt{1-\sin^2\angle BCD}=\frac{3}{5}
且因為在 \triangle BCD,\displaystyle\overline{BC}=25, \overline{CD}=15,\cos\angle BCD=\frac{3}{5},
所以 \overline{BD}=20, \angle CDB=90^\circ (或用餘弦定理確定 \overline{BD}=20,亦可知此邊角關係。)
\displaystyle\cos\angle ABD=\cos\left(\angle ABC - \angle CBD\right)=\cos\angle ABC\cos\angle CBD+\sin\angle ABC\sin\angle CBD
\displaystyle=\frac{7}{25}\times\frac{4}{5}+\frac{24}{25}\times\frac{3}{25}=\frac{4}{5}
由餘弦定理,可得 \displaystyle\overline{AD}=\sqrt{16^2+20^2-2\times16\times20\times\frac{4}{5}}=12