回復 1# bch0722b 的帖子
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=\frac{\left( a+b \right)\left( b+c \right)\left( c+a \right)}{abc\left( a+b+c \right)}=0\) 可推知
\(a,b,c\) 至少有兩數互為相反數,
請問條件中的n是否需為正奇數?因為結論中偶數好像不一定合
考慮\(\left( a,b,c \right)=\left( 1,-1,1 \right)\), 則 \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\) 但是
\(\frac{1}{{{a}^{2}}}+\frac{1}{{{b}^{2}}}+\frac{1}{{{c}^{2}}}\ne \frac{1}{{{\left( a+b+c \right)}^{2}}}\)