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Abstract

There are four regular cylindrical solids, comprising
the symmetrical intersections of three, four, six and
ten cylinders of equal radius; two quasi-regular solids,
six and 15; and their duals, seven and 16 cylinders
respectively. There are further solids with cubic crys-
tal symmetry formed by the intersection of six, 12 or
24 cylinders with axes along (hkl) directions; as well
as combinations of forms. Their volumes are indepen-
dent of 7 and are equal to 3 X surface area X radius.
Possible applications to the geometry of laser fusion
and to crystal dissolution morphology are briefly con-
sidered.

1. Introduction

Intersections of two cylinders are found in a variety
of situations: where pipes of circular cross section
meet or where the barrel vaulting of Norman or
Romanesque architecture intersects in a cross vault.
Here larger numbers of intersecting equi-radial cylin-
ders are considered, which display cubic crystal sym-
metry. The crystallographic axes available and the
resulting shapes are discussed in § 2. An alternative
description of symmetric axes is given in § 3, by
considering the body diagonals of regular and less-
regular solids. The surface areas and volumes of the
solids are derived in § 4, and models and possible
applications are considered in §§ 5 and 6.

2. Crystallographic axes and resulting shapes
2.1. Systems of axes with cubic crystal symmetry

Consider zone axes of crystals with cubic symmetry.
In Table 1 the zone-axis symbols (hkl) are listed in
order of increasing N =h>+k*+°. For example,
there are three (100) axes: [100], [010] and [001].
(200) axes are equivalent to (100), and so on. For
(210) axes, an example of h# k and 1=0, one may
take all 12 permutations, or just the six which preserve
the cyclic order of 2, 1 and 0. (The anti-cyclic order
will give the same solid formed by intersecting cylin-
ders, but in the opposite setting.) The same is true
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Table 1. Solids formed by intersecting cylinders
arranged by zone axes

N hkl Cyclic  Permutations  Figure no.
1 100 3 2

2 110 6 4

3 111 4 3

4 200 =100

5 210 6 12 7,10

6 211 12 12

7 — J—

8 220=110

9 21 12 14

9 300 = 100
10 310 6 12 6,9
1 311 12 13
12 22=111
13 320 6 12 8,11
14 321 12 24 15,16

15 — —
16 400 =100

for (310) and (320) axes. For (211), (221) and (311),
in which two indices are the same and no index is
zero, there are 12 permutations. For non-zero indices
which are all different, e.g. (321), there are 12 cyclic
permutations, and 24 if all permutations are allowed.

In Table 1, gaps occur for those numbers N which
cannot be expressed as the sum of three squares: 7,
15, 23, 28, 31,...,4™(8n+7), where m and n are
positive integers or zero (Davenport, 1968). [The
alternative expression p’(8¢ —1), in which p and ¢
are positive integers, generates the same set of num-
bers.] The table may of course be extended.

24 is the largest number of identical axes displaying
cubic crystal symmetry (since the order of the
holosymmetric cubic class is 48). Certain larger num-
bers may of course be achieved by combining several
different systems of axes, the numbers being additions
(or multiples) of 6, 12 or 24, together with the possibil-
ity of the single addition of 3 or 4, or both (ie. 7).

2.2. Cylindrical solids with cubic crystal symmetry

The minimum number of intersecting cylinders
needed for cubic symmetry is three and their axes,
lying along the (100) directions, are mutually
orthogonal. Fig. 1 shows a perspective view of the
resulting shape. Here the axes of the three cylinders
are represented by chain-dotted lines and the outlines
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of two of the cylinders have been drawn. The horizon-
tal straight lines which shade two of the facets of the
intersection solid are generators of one of the cylin-
ders. Two more facets, at the rear of the diagram,
belong to this cylinder. There are 12 cylindrical facets
inall, and if tangent planes were constructed touching
them in the generators joining the threefold vertices,
a rthombic dodecahedron would result. Fig. 2 shows
orthographic projections, drawn by computer, along
the [100], [110], [111] and [321] directions.

There are four (111) directions, and taking these
as axes for intersecting cylinders, the solid of 24 facets
depicted in Fig. 3 results. The solid formed by the
six (110) axes is shown in Fig. 4. Note the circular
cross sections in the [100], [111] and [110] projections
of Figs. 2, 3 and 4 respectively, and the relatively
sharp vertices of the other views, especially in Figs.
2 and 3 where the vertices protrude to a distance ) .
@3 /2)1/ 2 (==1-225) from the centre relative to cylinders Fig. 3. Four (111) cylinders: axes joining opposite vertices of a
of unit radius. Fig. 5 shows the intersection solid cube.
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Fig. 1. Perspective view of the solid common to three equi-radial
cylinders, whose axes are mutually orthogonal.
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(c) (d)
Fig. 2. The intersection of three equal (100) cylinders whose axes ! . o ] )
join the opposite vertices of an octahedron. Views along (a) Fig. 5. Seven (100)+(111) C}_'lmders: joining opposite vertices of
[100], (b) [110], (c) [111] and (d) [321]. a rhombic dodecahedron.
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Fig. 4. Six (110) cylinders: axes joining opposite vertices of a
cuboctahedron.
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formed by seven cylinders: three (100) and four (111).
It is thus a combination of forms and the figure clearly
shows the circular cross sections looking along [100]
and [111].

Other combinations of six cylinders are shown in
Figs. 6, 7 and 8. These show the solids formed by the
cyclic permutations of (310, (210) and (320} in the
progression of k/h from § through 3 to 3. The pro-
gression may be seen in the solids. The solid of Fig.
17 (discussed later) with pentad symmetry belongs
in this series with k/h=0-618. The corresponding
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Fig. 6. Six cylinders: (310} cyclic permutations. View along [321].

Fig. 7. Six cylinders: (210) cyclic.
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Fig.9. 12 cylinders: (310) all permutations.

complete permutations of (310), (210) and (320) are
shown in Figs. 9, 10 and 11 respectively.

There are certain similarities amongst Figs. 12
(211), 13 (311) and 14 (221), in each of which two
indices are the same. The most general case, with all
indices different and non-zero, exemplified by (321),
is shown for cyclic permutations in Fig. 15 and for
all permutations in Fig. 16: 12 and 24 cylinders respec-
tively. The surface of the latter is divided into 48
‘triangular’ regions each containing 19 facets, giving
a total of 912 in all.

Fig. 13. 12 cylinders: (311).



IAN O. ANGELL AND MORETON MOORE

The shapes derived from cyclic permutations of
(hkl), h # k # I, possess only (2/ m)3 symmetry; whilst
for all permutations, holosymmetric (4/m)3(2/m)
morphologies result.

3. Regular and quasi-regular solids

As an alternative description for symmetric axes, the
body diagonals of the various regular and less-regular
solids may be considered. There are five regular con-
vex (Platonic) solids, with the property that all faces
are equivalent and so also are all the vertices. Of these
the cube and octahedron have already been con-
sidered: the body diagonals of the octahedron are the
three (100) directions (the cylindrical solid is shown
in Fig. 2), and the body diagonals of the cube are the
four {111) directions (Fig. 3). The tetrahedron is non-
centrosymmetric and in any case the joins from the
centre to its four vertices give the same four (111)
directions as for the cube. The icosahedron, which

Fig. 16. 24 cylinders: (321) all permutations.
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has 12 vertices, gives rise to six cylinder axes, whilst
the (pentagonal) dodecahedron of 20 vertices gives
a solid formed from ten cylinders. These are shown
in Figs. 17 and 18 respectively. [The non-convex
regular (Kepler-Poinsot) polyhedra also have these
body diagonals.] Thus there are four regular cylin-
drical solids.

There are several classes of less-regular solids. [For
a discussion of these see Fejes Téth (1964).] The
Archimedean solids have equivalent vertices but
differing regular polygonal faces. Their duals (the
Catalan solids) have equivalent faces but differing
vertices. For example, the cuboctahedron has 12 ver-
tices, six square faces and eight triangular ones. Its
dual, the rhombic dodecahedron, has 12 rhombic
faces, six fourfold vertices and eight threefold ones.

(a) (b)
(e) (d)

Fig. 17. Six cylinders: axes joining opposite vertices of an icosahe-
dron. Views along (a) [100], (b) [110], (¢) [111] and (d) [321].

Fig. 18. Ten cylinders: axes joining opposite vertices of a (pen-
tagonal) dodecahedron.
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(Both solids have 24 edges.) The diagonals of the
cuboctahedron are the six {(110) directions; the cylin-
drical solid derived from these has already been con-
sidered and is shown in Fig. 4. The body diagonals
of the rhombic dodecahedron comprise the three
(100) and four {111) directions: the combination of
forms whose cylindrical solid is shown in Fig. 5.

The cuboctahedron is a combination of cube and
octahedron, and in a similar manner the
icosidodecahedron is a combination of icosahedron
and dodecahedron. It has 30 vertices and the corre-
sponding cylindrical solid of 15 axes is shown in Fig.
19. The dual of the icosidodecahedron is the rhombic
triacontahedron. This has (12+20=) 32 vertices and
the solid of 16 cylinders is shown in Fig. 20. From
the Archimedean solids, Fejes T6th (1964) selects
those with equivalent edges, the cuboctahedron and
icosidodecahedron, and calls them quasi-regular.
Roberison & Carter (1970) have also noted their
importance. The regular and quasi-regular solids with
the numbers of their body diagonals are listed in
Table 2, arranged as pairs of dual solids.

Polyhedra listed in column A each have six diads,
four triads and three tetrad axes of rotational sym-
metry, and also nine mirror planes (i.e. they have full
cubic symmetry in the crystallographic sense). Those
in column B have 15 diads, ten triads, six pentads
and 15 mirror planes (i.e. full icosahedral symmetry).
Such symmetries are also exhibited by the solids
formed by intersecting cylinders whose axes are the
body diagonals of these polyhedra.

For solids of group A (those with tetrad axes of

symmetry) the cylinder axes are as follows: Fig. 2
three axes: (100); Fig. 3 four axes: (111); Fig. 4 six
axes: (110); Fig. 5 seven axes: (100)+{111).

For solids of group B (with pentad axes) the
‘golden ratio’ 7 is required. It satisfies the quadratic
equation 7°—~7-1=0, and takes the value (1+
v/5)/2=1-61803. Fig. 17 six axes: cyclic permutations

SYMMETRICAL INTERSECTIONS OF CYLINDERS

Table 2. Regular and quasi-regular solids arranged as
pairs of duals

A B
Octahedron: 3
Cube: 4

Cuboctahedron: 6
Rhombic dodeca-
hedron: 7

Regular Icosahedron: 6

Dodecahedron: 10

Quasi-regular Icosidodecahedron: 15

Rhombic triaconta-
hedron: 16

of (710); Fig. 18 ten axes: (111)+cyclic permuta-
tions of (r—1170); Fig. 19 15 axes: (100)+ cyclic
permutations of (r 7+1 1); Fig. 20 16 axes: those of
Figs. 17 and 18 together. Fig. 17 belongs in the series
(Figs. 6, 7 and 8) of cyclic permutations of (hk0)
discussed above.

One could continue the discussion with all the
Archimedean solids and their duals, and the infinite
classes of prisms and anti-prisms. Suffice it to say that
a good number of Archimedean solids have already
been considered in § 2.2. The joins from the centre
to the vertices of the truncated tetrahedron are the
twelve (311) directions and the corresponding cylin-
drical solid is shown in Fig. 13. The body diagonals
of the truncated octahedron are the 12 (210) direc-
tions: see Fig. 10. The truncated cube (with regular
octagonal faces) has 12 body diagonals (h11) and the
diagonals of the rhombicuboctahedron are the 12
(hh1) directions, where h=+v2—1 (=0-414) in each
case. The great rhombicuboctahedron (or truncated
cuboctahedron), with regular octagonal and
hexagonal as well as square faces, has 24 body
diagonals of (hk1) type, where h=1+2v2 and k=
1++/2: again irrational indices.

4. VYolumes of the solids

The volumes of these solids, expressed in terms of
their radius R (or diameter D) do not contain 7!
The intersection of two equal cylinders at right angles

Fig. 19. 15 cylinders: derived from the icosidodecahedron.

Fig. 20. 16 cylinders: derived from the rhombic triacontahedron.
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was known to Archimedes (ca. 250 BC; see also Gard-
ner, 1962), who considered the circles inscribed
within the square sections of the solid. The areas of
the squares (4r%) are larger than those of the circles
(mr?) by the constant ratio 4/, and as the circles
enclose a sphere of volume 47R?/3, the volume of
the solid common to both cylinders is larger than this
by the same factor: (4/m7)x4wR*/3=16R>*/3=
2D%/3: a strangely simple result.

Hubbell (1965) has considered the general case of
the volume common to two cylinders of different radii
intersecting at the arbitrary angle 8, a much more
complicated situation with the volume involving
either hypergeometric series or elliptic integrals. For
equal radii, however, the volume is simply
16R?/(3 sin B).

The volume of the symmetrical solid common to
three (100) cylinders lacks a factor of 7 (Moore,
1973), and this is also true for the solids formed by
four (111) and by six (110) intersecting cylinders
(Moore, 1974). This apparently surprising result may
be explained by considering each solid as being made
up of a number of cylindrical sectors with vertices
0 (0,0,0). A (R,0,0), B (R 6,0), C (R 6,2),
expressed in cylindrical polar coordinates: see Fig.
21. Each cylindrical facet of the solid may be divided
into several cylindrical triangles such as ABC: AB is
a circular arc of radius R in the plane OAB perpen-
dicular to the axis of the cylinder, BC is a straight
line parallel to this axis (ie. it is part of a generator
of the cylinder), and COA is a plane intersecting the
cylindrical surface in the elliptical arc CA.

The height h of the elementary strip XY compared
with that of BC is h/Z = (R sin 6)/(R sin @), where
0 is the angle XOA and @ the angle BOA; giving
h=Z(sin §/sin @). The area A of the surface ABC is

? h(R d8)=(RZ/sin @)(1—cos O)

= RZ(cosec @ —cot O).

The volume V of OABC =[; 1Rh(R d6) = AR/3.
The result V=AR/3, true for cylindrical sectors

as well as for complete cylindrical solids, relies on

the fundamental formula for the volume of a pyramid

Fig. 21. Cylindrical triangle ABC.
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or cone being 3 X ‘base area’ X ‘height’. This is related
to Gauss’s theorem for the position vector r, since
divr=3 and [ffdivrdV=3V=[[[r.dS="base
area’ X ‘height’. In the limiting case of infinitely many
cylinders intersecting in a sphere, the volume is
(4mR*R/3: the familiar 27 R>.

For the example of the solid common to the three
(100) cylinders, each of the 12 rhombic facets may
be divided into four equal cylindrical triangles, one
of which has vertices (R,0,0), (R, w/4,0) and
(R, m/4, R/2). Thus in the formula @==x/4, Z =
R/+V2, and the total volume is

(12x4x3R?*)(V2-1)R/V2=D*2—-2).

In the same way, V(111)=(3/v/2)(2—v3)D? and
V(110)=3(3+2v/3—4v2) D, since the kite-shaped
facets may also be subdivided into cylindrical trian-
gles of the required form. Expressed in decimals the
volumes are 0-586D°, 0-568 D* and 0-538D° respec-
tively. As the number of intersecting cylinders
increases, the volumes of the solids thus formed
quickly converge to the volume of a sphere, wD?/6=
0-524D°.

5. Models

Complete cylindrical surfaces are easy to make by
lathe. Machining accuracy, however, has to be great
if a good result is to be obtained for the shape common
to several intersecting cylinders. For example, if the
perpendicular axes of two cylinders of 1 cm radius
do not intersect in a mathematical point but miss one
another by 0-001 cm, the error at the surface is a
noticeable 0-1 cm.

The chord y cut off from the surface of the first
cylinder by the second, and the separation x of the
axes, are related by the semi-angle 6 subtended at
the centre: see Fig. 22 and Table 3.

x=1-—cos 6,
y=2sin 8 =2[x(2—x)]"%

Fig.22. The amount y cut off from a cylinder of unit radius by
another at right angles. x measures the distance between the
axes of the cylinders.
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Table 3. Relationship between x and y for cylinders of
unit radius

x 0
y 0

0-000001
0-003

0-00001
0-009

0-0001 0-001 0-01 0-1 1
0-03 0-1 0-3 0-9 2

6. Applications
6.1. The geometry of laser fusion

When apparatus is designed for laser fusion, con-
sideration is given to arranging several pairs of
inward-pointing lasers so that the axes of their beams
intersect at a point. If the laser beams are assumed
to have circular cross sections, the volume illuminated
by all the lasers will be the intersection of right circular
cylinders. For reasons of thermal stability of the
excited plasma at the centre, the lasers are usually
arranged in a symmetrical fashion. Here various poss-
ible arrangements have been considered.

6.2. Dissolution of cubic crystals

The morphologies of partially dissolved crystals
are frequently rounded (Heimann, 1975), but edges
and vertices may still be well defined. A dissolution
shape depends on the starting conditions and con-
tinuously changes as dissolution proceeds (Frank,
1972). Even if the chamfering of edges may be
approximated by parts of cylindrical surfaces, which
eventually join with others from parallel edges to
form completed cylinders, it would be unusual for a
dissolving crystal if the axes of such cylinders passed
through a single point. The edges grouped around a
given symmetry axis of a dissolved crystal often fail
to meet on the axis as they should in an ideally
symmetric body; and in etching experiments surface
roughening and etch pitting often mask any underly-

Acta Cryst. (1987). A43, 250-252

SYMMETRICAL INTERSECTIONS OF CYLINDERS

ing ideal morphology. Notwithstanding these mis-
givings, there are rare occasions when some of the
solids depicted here resemble actual dissolution
bodies. For example, Fig. 2 bears a similarity to
dissolved crystals of the diamond structure [Ellis,
1954; Batterman, 1957 (see Fig. 11, p. 1239); Moore
& Lang, 1974].

7. Concluding remarks

All the regular and quasi-regular solids for intersect-
ing cylinders have been drawn, we believe for the
first time. They may have relevance in certain applica-
tions, but in any case they have a beauty of their own.

We thank Professor Sir Charles Frank FRS and the
referees for their constructive comments during the
preparation of this manuscript.

References

ARCHIMEDES (ca. 250 BC). The Method. English translation by
T. L. HEATH (1912). Reprinted 1953. New York: Dover.

BATTERMAN, B. W. (1957). J. Appl. Phys. 28, 1236-1241.

DAVENPORT, H. (1968). The Higher Arithmetic, p. 126. London:
Hutchinson.

ELLis, R. C. (1954). J. Appl. Phys. 25, 1497-1499.

FEJES TOTH, L. (1964). Regular Figures, ch.1V. Oxford: Pergamon.

FrRANK, F. C. (1972). Z. Phys. Chem. (Frankfurt am Main), 77,
84-92.

GARDNER, M. (1962). Sci. Am. 207(5), 164.

HEIMANN, R. B. (1975). Auflésung von Kristallen. Vienna:
Springer.

HuBBELL, J. H. (1965). J. Res. Natl Bur. Stand. Sect. C, 69(2),
139-143.

MOoORE, M. (1973). PhD thesis, Univ. of Bristol, Vol. 1, p. 17.

MOORE, M. (1974). Math. Gaz. 58, 181-185.

MOORE, M. & LANG, A. R. (1974). J. Cryst. Growth, 26, 133-139.

ROBERTSON, S. A. & CARTER, S. (1970). J. London Math. Soc.
(2), 2, 125-132.

Treatment of Enhanced Zones and Rows in Normalizing Intensities
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Abstract

Contrary to the recommendation in some textbooks,
enhanced reflexions should not be divided by the
enhancement factor in forming general averages for
normalization. The intensity required for the
enhancement is drawn from the adjacent reflexions
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in the reciprocal lattice, and the correct average
intensity is obtained by including all reflexions at
their observed intensity. Weights based on the number
of reflexions of different types intercepted by the
spherical shell that defines those included in the
average may be appropriate.
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