
 15 

陸、筆試試題及參考解答 
 

 111 學年度普通型高級中學數學科能力競賽(決賽) 

筆試（一）試題卷 

 

編號：              （學生自填） 

注意事項： 

(1) 時間：2 小時(13:30～15:30)  

(2) 配分：每題皆為 7 分 

(3) 不可使用計算器  

(4) 請將答案依序寫在答案卷內 

(5) 學生自評預估得分(每題 0 ~7 分) 

 

一、設𝑎, 𝑏, 𝑐是正實數，且滿足條件𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 + 2𝑎𝑏𝑐 = 1，試證： 

1

𝑎𝑏
+

1

𝑏𝑐
+

1

𝑐𝑎
+

1

2𝑎𝑏𝑐
≥ 16, 

並求等號成立時，𝑎, 𝑏, 𝑐之值分別是多少？ 

二、 已知有五個不同的四位數，它們的千位數字相同且它們的和恰能被其

中的四個數整除，求所有滿足此條件的五個數。 

三、 如圖，設銳角三角形𝐴𝐵𝐶中，𝐴𝐶̅̅ ̅̅ > 𝐴𝐵̅̅ ̅̅ ，點𝑀, 𝑁分別在邊𝐴𝐵, 𝐴𝐶上滿

足𝐴𝑀̅̅̅̅̅ < 𝐴𝑁̅̅ ̅̅，△ 𝐴𝐵𝐶與△ 𝐴𝑀𝑁的外接圓交於相異兩點𝐴, 𝑃。設𝐷, 𝐸, 𝐹分

別為𝑀𝑁̅̅ ̅̅ ̅, 𝐵𝑁̅̅ ̅̅ , 𝐶𝑀̅̅̅̅̅的中點，△ 𝐷𝐸𝐹的外接圓與𝑀𝑁̅̅ ̅̅ ̅再交於𝐷與𝑁之間的一

點𝐺。證明： 

(1) △ 𝐷𝐸𝐹 ∼△ 𝑃𝑀𝑁； 

(2) 
𝐸𝐷̅̅ ̅̅

𝐸𝐺̅̅ ̅̅
=

𝑀𝑃̅̅ ̅̅ ̅

𝑁𝐴̅̅ ̅̅
。 
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111 學年度普通型高級中學數學科能力競賽(決賽) 

筆試（二）試題卷 

 

編號：              （學生自填） 

注意事項： 

(1) 時間：2 小時(16:00～18:00) 

(2) 配分：每題皆為 7 分 

(3) 不可使用計算器  

(4) 請將答案依序寫在答案卷內 

(5) 學生自評預估得分(每題 0 ~7 分) 

 

一、 設𝑎, 𝑏, 𝑐為正整數，且𝑐(𝑎𝑐 + 1)2 = (5𝑐 + 2𝑏)(2𝑐 + 𝑏)，試證：𝑐必為奇

數且𝑐為完全平方數。 

二、 𝑆 = {2350, 2351, ⋯ , 2350 + 𝑘}，求所有的正整數𝑘，使得集合𝑆能分

成元素和相等且交集為空集合的兩個子集合𝑆1與𝑆2。 

三、 設𝑥 ≥ 3且三角形的三邊長為log 𝑥，log(𝑥 + 1)和log(𝑥2 + 1)。證明此

三角形為鈍角三角形且其鈍內角度數大於120°。 

       
  



 17 

筆試參考解答 

題目： 

設𝑎, 𝑏, 𝑐是正實數，且滿足條件𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎 + 2𝑎𝑏𝑐 = 1，試證： 

1

𝑎𝑏
+

1

𝑏𝑐
+

1

𝑐𝑎
+

1

2𝑎𝑏𝑐
≥ 16, 

並求等號成立時，𝑎, 𝑏, 𝑐之值分別是多少？ 

 

解 

析 

類    型 ■ 代數(A)   □ 數論(N)   □ 幾何(G)   □ 組合(C) 

試題出處 ■ 自編      □ 改編於： 

難 易 度 □ 難   ■中等   □易 編 號  筆試一(1)  

解答： 因為 

     1 2  3 2 2

3 2( ) 2 2( ) 2( ) 2

( 1)( 1) ( 1)( 1) ( 1)( 1) 2( 1)( 1)( 1)

1 1 1
2

1 1 1

ab bc ca abc ab bc ca abc

ab bc ca a b c abc ab bc ca a b c

b c c a a b a b c

a b c

= + + +  = + + + +

 + + + + + + = + + + + + + +

 + + + + + + + + = + + +

 + + =
+ + +

 

如果 x, y 皆為正實數， 

則由算幾不等式，得 ，且當 時等號成立。 

 

將三式相加，可得： 

 

 

故當 ，即 時，等號成立。 

1 1 4

x y x y
+ 

+
x y=

1 1 1 1 1 1 1 1 1
,      ,      

3 4 1 1 3 4 1 1 3 4 1 1a a b b c c
 +  +  + 

+ + + + + +

1 1 1 1 1 1
 1

4 1 4 1 4 1 1 1 1a b c a b c
+ + +  + +

+ + + + + +

1 1 1 1 1 1
1 ( 2)

4 1 4 1 4 1 1 1 1

(4 1)(4 1) (4 1)(4 1) (4 1)(4 1) (4 1)(4 1)(4 1)

16( ) 8( ) 3 64 16( ) 4( ) 1

4( ) 2 64

2( ) 1 32

1 1 1 1

2

a b c a b c

b c c a a b a b c

ab bc ca a b c abc ab bc ca a b c

a b c abc

a b c abc

ab bc ca

 + +  + + =
+ + + + + +

 + + + + + + + +  + + +

 + + + + + +  + + + + + + +

 + + + 

 + + + 

 + + + 16
abc



3 4 1,  3 4 1,  3 4 1 a b c= + = + = +
1

2
a b c= = =
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筆試參考解答 

題目：  

       已知有五個不同的四位數，它們的千位數字相同且它們的和恰能被其中的四個數整 

除，求所有滿足此條件的五個數。 

 

解 

析 

類    型 □ 代數(A)   ■ 數論(N)   □ 幾何(G)   □ 組合(C) 

試題出處 □ 自編      □ 改編於：大陸競賽試題 

難 易 度 □ 難   □ 中等   ■ 易 編 號   筆試一(2) 

解答：設此五個數為𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5，而其千位數字為 k 

             令S為此五個數的和 

           1000𝑘 ≤ 𝑎𝑖 < 1000(𝑘 + 1)    i = 1, 2, 3 4, 5 

           𝑎𝑖 + 4000𝑘 ≤ 𝑆 < 4000(𝑘 + 1) + 𝑎𝑖 

       1 +
4𝑘

1+𝑘
< 1 +

4𝑘

𝑎𝑖/1000
≤

𝑆

𝑎𝑖
< 1 +

4(𝑘+1)
𝑎𝑖

1000

< 1 +
4(𝑘+1)

𝑘
= 5 +

4

𝑘
 

          k = 1，3 <
𝑆

𝑎𝑖
< 9，  

𝑆

𝑎𝑖
 的可能值為 4, 5, 6, 7, 8 

         𝑘 ≥ 2，不可能包括上面那些數 

          
𝑆

𝑎𝑖
 的值為(i) 4, 5, 6, 7 或 (ii) 5, 6, 7, 8 

     (i) 𝑆 = 4𝑎𝑖，𝑆 = 5𝑎𝑖，𝑆 = 6𝑎𝑖，𝑆 = 7𝑎𝑖  

        所以 𝑆 = 420𝑡，因此五個數為 60t, 70t, 84t, 105t, 101t 

         t = 17,  1020, 1190, 1428, 1785, 1717 

         t = 18,  1080, 1260, 1512, 1890, 1818 

         t = 19,  1140, 1330, 1596, 1995, 1919 

     (ii) 𝑆 = 5𝑎𝑖，𝑆 = 6𝑎𝑖，𝑆 = 7𝑎𝑖，𝑆 = 8𝑎𝑖  

        所以 𝑆 = 840𝑡，因此五個數為 105t, 120t, 140t, 168t, 307t 

        但
307𝑡

105𝑡
> 2 (不滿足條件) 

        故五數為(i)中之數 
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筆試參考解答 

題目： 

   如圖，設銳角三角形𝐴𝐵𝐶中，𝐴𝐶̅̅ ̅̅ > 𝐴𝐵̅̅ ̅̅ ，點𝑀, 𝑁分別在   

邊𝐴𝐵, 𝐴𝐶上滿足𝐴𝑀̅̅̅̅̅ < 𝐴𝑁̅̅ ̅̅ ，△ 𝐴𝐵𝐶與△ 𝐴𝑀𝑁的外接圓 

交於相異兩點𝐴, 𝑃。設𝐷, 𝐸, 𝐹分別為𝑀𝑁̅̅ ̅̅ ̅, 𝐵𝑁̅̅ ̅̅ , 𝐶𝑀̅̅̅̅̅的中點 

，△ 𝐷𝐸𝐹的外接圓與𝑀𝑁̅̅ ̅̅ ̅再交於𝐷與𝑁之間的一點𝐺。 

證明： 

(1) △ 𝐷𝐸𝐹 ∼△ 𝑃𝑀𝑁； 

(2) 
𝐸𝐷̅̅ ̅̅

𝐸𝐺̅̅ ̅̅
=

𝑀𝑃̅̅ ̅̅ ̅

𝑁𝐴̅̅ ̅̅
。 

        

解 

析 

類    型 □ 代數(A)   □ 數論(N)   ■ 幾何(G)   □ 組合(C) 

試題出處 ■ 自編      □ 改編於： 

難 易 度 □ 難   ■ 中等   □ 易 編 號  筆試一(3)  

解答：  

1. 先觀察 PBCPMN  ~ ：PN 與 ABC 的外接圓 

再交於點 S . 則 BPCBACMANMPN === ,

BCPBSPBAPPNM ==−= 180    

所以得 PBCPMN  ~ . 

2. 因此得
NPCBPNBPC

BPNMPNMPB

=−=

−=
  

且
MP NP

BP CP
= . 故 PNCPMB  ~ .  

3. 因 , ,D E F 為中點， ACDFABDE ||,|| , 得  

MPNMACBACEDF === .  

又
1
2

1
2

MBDE PM

DF NC PN
= = （ PNCPMB  ~ ）. 由此得 PMN 與 DEF 相似。 

4. 設 A為 AMN 的外接圓上一點使得 MNAA || , 所以 AAMN 為圓內接等腰梯形，得 

PMAAMANMBGDE === 或 .180 PMA−  

所以得
NA

MP

AM

MP

PMA

PNM

GDE

DFE

EG

ED
=


=



=




=

sin

sin

sin

sin
.  
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筆試參考解答 

題目： 

      設𝑎, 𝑏, 𝑐為正整數，且𝑐(𝑎𝑐 + 1)2 = (5𝑐 + 2𝑏)(2𝑐 + 𝑏)，試證：𝑐必為奇數且𝑐為完全

平方數。  

 

解 

析 

類    型 □ 代數(A)   ■ 數論(N)   □ 幾何(G)   □ 組合(C) 

試題出處 □ 自編      ■ 改編於：Math competition 

難 易 度 □ 難   ■ 中等   □ 易 編 號   筆試二(1) 

解答： 

(1) 利用反證法，假設 c 為偶數，即 12c c= 。 

原式改寫為： 2

1 1 1 1(2 1) (5 )(4 )c ac c b c b+ = + +  

令 1 0 1 0( , )  ,  d b c b db c dc=  = =令 ，其中 0 0( , ) 1b c = 。 

 2

0 0 0 0 0 0(2 1) (5 )(4 )c adc d c b c b+ = + +  

∵ 2

0 0 0 0 0 0 0 0 0( ,5 ) ( , 4 ) 1  ( , (2 1) ) 1 | , |c c b c c b d adc d c c d+ = + = + = 且  

∴ 0d c= 且 2

0 0 0 0 0(2 1) (5 )(4 )adc c b c b+ = + +  

∵ 0 0 0 0 0 0 0 0 0(5 ,4 ) ( ,4 ) ( , ) 1c b c b c c b c b+ + = + = =  

因此可設 2 2

0 0 0 05 ,  4c b m c b n+ = + = ，其中 m, n 為正整數，所以m n ，即 1m n−    

2 2

0d c m n= = −  2

02 1 2 1ad adc mn+ = + = ，因此 

2 2 2 2 2 2

2

1 2 1 2 ( ) 1 2 ( ) ( )

1 2 ( ) 1 8 1 8

mn ad a m n a m n m n

a m n amn mn

= + = + − = + − +

 + +  +  +
 

即7 1   mn  − （不合），所以 c 不為偶數。 

(2) 令 0 0( , )  ,d b c b db c dc= = =且 ，其中 0 0( , ) 1M b c =  

則原式為 2

0 0 0 0 0 0( 1) (5 2 )(2 )c adc d c b c b+ = + +  

∵ 0 0( , ) 1b c = 且 c0 為奇數， 

∴ 0 0 0 0 0 0( ,2 ) 1 ( ,5 2 )c c b c c b+ = = + 0 |c d ，又 2

0 0( , ( 1) ) 1 |d adc d c+ =   

所以 2

0 0,  c d c dc d= = = ，得證。■ 
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筆試參考解答 

題目： 

𝑆 = {2350, 2351, ⋯ , 2350 + 𝑘}，求所有的正整數𝑘，使得集合𝑆能分成元素和相等

且交集為空集合的兩個子集合𝑆1與𝑆2。 

  

解 

析 

類    型 □ 代數(A)   □ 數論(N)   □ 幾何(G)   ■ 組合(C) 

試題出處 □ 自編      ■ 改編於：大陸競賽題 

難 易 度 □ 難   □中等   ■易 編 號 筆試二(2)  

解答：  ∑ (2350 + 𝑛)𝑘
𝑛=0 = 2350(𝑘 + 1) +

𝑘(𝑘+1)

2
 必為偶數 

    4|𝑘(𝑘 + 1)，則 k = 4h 或 k = 4h + 3 

  (i) 設 k = 4h + 3，h = 0, 1, 2, …. 

     令𝑆1 = {2350 + 𝑖|𝑖 = 4ℎ, 4ℎ + 3, ℎ = 0, 1, 2, … , [
𝑘

4
]} 

       𝑆2 = {2350 + 𝑖|𝑖 = 4ℎ + 1, 4ℎ + 2, ℎ = 0, 1, 2, … , [
𝑘

4
]} 

    則 S1 與 S2 滿足所求，因此對所有非負整數 h，k = 4h + 3 均為所求 

(ii) 𝑘 = 4ℎ，h = 1, 2, …. 

  不失其一般性，S1 元素的個數≥ 2ℎ + 1，S2 元素的個數≤ 2ℎ 

即∑ (23502ℎ
𝑗=0 + 𝑗) ≤ ∑ (23504ℎ

𝑗=2ℎ+1 + 𝑗) = (2ℎ)2 + ∑ (23502ℎ
𝑗=1 + 𝑗) 

ℎ ≥ 25，則𝑘 ≥ 100 

若𝑘 = 4ℎ且𝑘 ≥ 100，則 S 存在滿足的二子集合分割 

𝑘 = 100 

𝑆3 = {2350, 2351, … , 2350 + 50} 

𝑆4 = {2350 + 51, 2350 + 52, … , 2350 + 100} 

S3 中元素的和為2350 × 51 + 1275， 

S4 中元素的和為2350 × 50 + 1275 + 2500 

 所以𝑆1 = 𝑆3 ∪ {2425} − {2350}，𝑆2 = 𝑆4 ∪ {2350} − {2425} 

𝑘 > 100 

則前面 101 個數依上面的方式來分，而後面𝑘 − 100 = 4ℎ的數，每相連接的四個數則

依 (i)的方式來分即可。 

    故所有的正整數值為:{𝑘|𝑘 = 4ℎ + 3, ℎ = 0, 1, 2, …；𝑘 = 4ℎ, ℎ = 25, 26, … } 
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筆試參考解答 
題目： 

        設𝑥 ≥ 3且三角形的三邊長為log 𝑥，log(𝑥 + 1)和log(𝑥2 + 1)。證明此三角形為鈍 角

三角形且其鈍內角度數大於120°。 

 

解 

析 

類    型 □ 代數(A)   □ 數論(N)   ■ 幾何(G)   □ 組合(C) 

試題出處 ■ 自編      □ 改編於： 

難 易 度 ■ 難  □ 中等   □ 易 編 號  筆試二(3) 

解答： 
三角形的最長邊為log(𝑥2 + 1)，對應此邊的內角的餘弦為 

(log 𝑥)2 + (log(𝑥 + 1))2 − (log(𝑥2 + 1))2

2 log 𝑥 log(𝑥 + 1)
 

以下證明此式小於cos 120° = −
1

2
，也就是鈍內角度數大於120°。由 

(log 𝑥)2 + (log(𝑥 + 1))2 − (log(𝑥2 + 1))2

2 log 𝑥 log(𝑥 + 1)
< −

1

2
 

⟺ (log 𝑥 + log(𝑥 + 1))2 − (log(𝑥2 + 1))2 < log 𝑥 log(𝑥 + 1) 

⟺ log
𝑥(𝑥 + 1)

𝑥2 + 1
log 𝑥(𝑥 + 1)(𝑥2 + 1) < log 𝑥 log(𝑥 + 1)           

⟺ log
𝑥(𝑥 + 1)

𝑥2 + 1
log 𝑥(𝑥 + 1)(𝑥2 + 1) < log 𝑥

1
4 log(𝑥 + 1)4      

只需證明：當𝑥 ≥ 3時， 

(1). 𝑥1/4 >
𝑥(𝑥+1)

𝑥2+1
 

(2). (𝑥 + 1)4 > 𝑥(𝑥 + 1)(𝑥2 + 1) 

其中(2)明顯成立，對於(1)可由𝑥1/4 >
𝑥(𝑥+1)

𝑥2+1
⟺ 𝑥 > (

𝑥(𝑥+1)

𝑥2+1
)

4

 

令𝑥 = 𝑎 + 3, 𝑎 ≥ 0代入上式，即需證明 

𝑎 + 3 > (
𝑎2 + 7𝑎 + 12

𝑎2 + 6𝑎 + 10
)

4

= (1 +
𝑎 + 2

𝑎2 + 6𝑎 + 10
)

4

 

注意 

(1 +
𝑎 + 2

𝑎2 + 6𝑎 + 10
)

4

< (1 +
𝑎 + 2

(𝑎 + 2)(𝑎 + 4)
)

4

= (1 +
1

𝑎 + 4
)

4

≤ (1 +
1

4
)

4

< 3 ≤ 𝑎 + 3 

至此證明完畢。 
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柒、口試試題及參考解答 
 

111 學年度普通型高級中學數學科能力競賽(決賽) 

口 試 試 題 

注意事項： 

(1) 試卷共 2 題，參賽者可先在本試卷上作答，思考時間 20 分鐘； 

(2) 攜帶本試卷到口試教室應試，答辯時間 20 分鐘，並繳回本試卷； 

(3) 口試完成後由助理引導至 M716 教室，繼續作答獨立研究。 

 

學生編號：             

一、 設𝑛為正整數。已知不等式𝑎2𝑛
2 ≥ 𝑐(𝑎1 + 𝑎3 + ⋯ + 𝑎2𝑛−1) + 𝑎2𝑛對任意

嚴格遞增的正整數數列𝑎1 < 𝑎2 < ⋯ < 𝑎2𝑛均成立，試求常數𝑐的最大

可能值。(此最大值可能與𝑛有關) 
【解答】 

 

 

 

二、 以下圖形為某公園的道路圖，每個道路交叉口都有一盞燈，可以是打

開的或關掉的。每一個被道路分割產生的區域都有一個開關，按這個

開關後會改變相鄰的路燈的狀態，開的會被關掉，關掉的會被打開。

請證明不論開始所有路燈開關的情形為何，都可以適當的按壓不同區

域的開關，讓所有的燈都被關

掉。 

 

【解答】 
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口試參考解答 

題目： 

設𝑛為正整數。已知不等式𝑎2𝑛
2 ≥ 𝑐(𝑎1 + 𝑎3 + ⋯ + 𝑎2𝑛−1) + 𝑎2𝑛對任意嚴格遞增的正整

數數列𝑎1 < 𝑎2 < ⋯ < 𝑎2𝑛均成立，試求常數𝑐的最大可能值。(此最大值可能與𝑛有關) 

解 

析 

類    型 ▓ 代數(A)   □ 數論(N)   □ 幾何(G)   □ 組合(C) 

試題出處 □ 自編      ▓ 改編於：2003 中國女子數奧競賽 

難 易 度 □ 難   □ 中等   ▓ 易 編 號   口試一 

解答：常數 c 的最大可能值為
4 2n

n

−
。 

令 ia i= ，則 ( )2 2(2 ) 1 3 (2 1) 2 2n c n n cn n + + + − + = + ，整理可得
4 2n

c
n

−
 。 

以下證明：對任意的嚴格遞增正整數數列 1 2 2na a a   ，都有

( )2

2 1 3 2 1 2

4 2
n n n

n
a a a a a

n
−

−
 + + + + 。 

由於對任一 1,2, ,2 1i n= − ，都有 2 (2 )i na a n i − − 。所以 

( )

2

2 2 1 2

1

2

2 2 2

1

2 2

2 2 2

2 2

2 2

2

2 2

4 2

4 2
(2 (2 1))

4 2

(4 1) (4 2 )

( 2 ) ( 2 )

n

n i n

i

n

n n n

i

n n n

n n

n n

n
a a a

n

n
a na n i a

n

n
a na n a

n

a n a n n

a n a n

−

=

=

−
− = − −

−  
 − − − − − 

 

−
= − − −

= − − + −

= − + −





左 右

 

因為 2 2na n ，故上式恆大於或等於 0，得證。 

註：原題為：給定正整數 n，找出最大實數，使得不等式 ( )1 2 1 2n n na a a a a − + + + + 對

任意遞增正整數數列 1 2 na a a   均成立。答案：
2 4

1

n

n

−

−
。 
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口試參考解答 
題目： 

      以下圖形為某公園的道路圖，每個道路交叉口都有一盞燈，可以是打開的或關掉的。

每一個被道路分割產生的區域都有一個開關，按這個開關後會改變相鄰的路燈的狀

態，開的會被關掉，關掉的會被打開。請證明不論開始所有路燈開關的情形為何，都

可以適當的按壓不同區域的開關，讓所有的燈都被關掉。 

 

 

 

 

 

  

解 

析 

類    型 □ 代數(A)   □ 數論(N)   □ 幾何(G)   ■ 組合(C) 

試題出處 ■ 自編      □ 改編於： 

難 易 度 □ 難   □ 中等   ■ 易 編 號  口試二 

解答：我們把區域編號如下(0-111,A,B,C)，同時也把路燈編號為 0-111, a,b，燈 n 是第 n 區

右邊的路燈，a,b 則分別是 0 區的上和下。開始時如果 a,b 一開一關，我們可以按 A 讓它們

同開或同關。假設燈 n+1-111 都是關的，燈 n 是開的，可以按區域 n 讓燈 n-111 都是關的，

而且 a,b 仍然是同開或同關。重覆同樣的方法，可以把 0-111 都關掉。這時如果 a,b 也是關的

就完成了，如果 a,b 都是開的，只要再按 C 區就可以把它們關掉。 
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捌、獨立研究試題及參考解答 
 

111 學年度普通型高級中學數學科能力競賽(決賽) 

 獨立研究（一）試題卷 

注意事項： 

 (1) 三題中自選兩題作答，並請註明題號 

 (2) 時間：1.5 小時（8:30～10:00） 

 (3) 配分：每題皆為 7 分 

 (4) 不可使用計算器 

 (5) 請將答案寫在答案卷內 

           學生編號：             
 

一、 已知實數𝑎, 𝑏, 𝑐皆介於0與1之間，且𝑥, 𝑦, 𝑧為正實數，如果𝑎𝑥 = 𝑏𝑐，𝑏𝑦 = 𝑐𝑎，

𝑐𝑧 = 𝑎𝑏，試證： 

1

𝑥 + 2
+

1

𝑦 + 2
+

1

𝑧 + 2
≤

3

4
。 

二、 若𝑚個互不相同的正偶數與𝑛個互不相同的正奇數之總和為2022，求滿足這

樣條件的𝑚與𝑛，其4𝑚 + 3𝑛的最大值。 

三、 數線上每個整數的位置有一個箱子(規定箱子編號即為其所在的整數位置)，

位於原點的箱子(故此箱編號為0)中有一個石頭，其他箱子都是空的，每一

次我們可以進行下列操作之一： 

(1). (分裂)在某個非空箱子拿出一個石頭，然後在其左、右的箱子個放入

一顆石頭。 

(2). (合併)選擇編號相差2的兩個非空箱子，各拿出一個石頭，然後在中

間箱子放入一個石頭。 

如果經過若干次操作之後，竟然只剩下一個石頭，試求出這個石頭所在箱

子編號的所有可能。 
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111 學年度普通型高級中學數學科能力競賽(決賽) 

 獨立研究（二）試題卷 

注意事項： 

 (1) 三題中自選兩題作答，並請註明題號 

 (2) 時間：1.5 小時（10:20～11:50） 

 (3) 配分：每題皆為 7 分 

 (4) 不可使用計算器 

 (5) 請將答案寫在答案卷內 

           學生編號：             

 

一、 設{𝑎𝑛}為一個無窮的整數數列，且滿足𝑎𝑛 ≠ −1， 

𝑎𝑛+2𝑎𝑛+1 + 𝑎𝑛+2 − 𝑎𝑛 − 108 = 0, 𝑛 ∈ ℕ，求這種{𝑎𝑛}的個數有多少？ 

二、 對於一個{1, 2, ⋯ , 𝑛}的排列σ = 𝜎1𝜎2 ⋯ 𝜎𝑛，定義一隨機變數𝑋如下：先約定

𝜎0 = 𝜎𝑛+1 = 0。對1 ≤ 𝑖 ≤ 𝑛，如果𝜎𝑖−1 < 𝜎𝑖且𝜎𝑖 > 𝜎𝑖+1，則稱𝜎𝑖是一個“山

頂”。定義𝑋取值為“山頂出現的次數”。例如：53261784有三個山頂

(5, 6, 8)，故𝑋 = 3。若每個{1, 2, ⋯ , 𝑛}的排列被選取的機會相同，求𝐸(𝑋)。 

三、 圓內接四邊形𝐴𝐵𝐶𝐷的一組對邊𝐴𝐷和𝐵𝐶的延長線相交於點𝑃，另一組對邊

𝐴𝐵和𝐶𝐷的延長線相交於點𝑄，∠𝑃和∠𝑄的平分線相交於點𝑅。對角線𝐴𝐶與

𝐵𝐷相交於點𝐾，∠𝐷𝐾𝐶的平分線交𝐶𝑃於點𝑀。求證： 

(1) 𝑃𝑅 ⊥ 𝑄𝑅； 

(2) 𝑄𝑅 ⊥ 𝐾𝑀。 
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獨立研究參考解答 

題目： 

已知實數𝑎, 𝑏, 𝑐皆介於0與1之間，且𝑥, 𝑦, 𝑧為正實數，如果𝑎𝑥 = 𝑏𝑐，𝑏𝑦 = 𝑐𝑎，𝑐𝑧 = 𝑎𝑏， 

試證： 

1

𝑥 + 2
+

1

𝑦 + 2
+

1

𝑧 + 2
≤

3

4
。 

 

解 

析 

類    型 ■ 代數(A)   □ 數論(N)     幾何(G)  □ 組合(C) 

試題出處 □ 自編      ■ 改編於：Math competition 

難 易 度 □ 難  ■ 中等  □ 易 編 號 獨立研究一(1) 

解答：令
1 1 1

2 2 2

log , log , logu a v b w c= = = ，由
1 1 1

2 2 2

log log logx v w
a bc x a b c x

u

+
=  = +  = ， 

同理可得 ,
u w u v

y z
v w

+ +
= = 。 

欲證: 
1 1 1 3 1 1 1 3

2 2 2 4 4
2 2 2

v w u w u vx y z

u v w

+ +   + + 
+ + ++ + +

+ + +

 

3

2 2 2 4

u v w

u v w u v w u v w
 + + 

+ + + + + +
。 

令 s u v w= + + ，因此上式 

3 9
1 1 1

4 4

9 1 1 1 9 1 1 1
4 9

4 4

u v w u v w

s u s v s w s u s v s w

s s s
s

s u s v s w s u s v s w s s u s v s w

     
 + +   − + − + −      

+ + + + + +     

 
 + +   + +   + +  

+ + + + + + + + + 

 

利用柯西不等式，可得

21 1 1 1 1 1
4 [( ) ( ) ( )] (1 1 1) 9s s u s v s w

s u s v s w s u s v s w

   
+ + = + + + + + + +  + + =   

+ + + + + +   
， 

因此
9 1 1 1 3

4 2 2 2 4

s s s

s u s v s w x y z
+ +   + + 

+ + + + + +
，故得證。 
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獨立研究參考解答 

題目： 

若𝑚個互不相同的正偶數與𝑛個互不相同的正奇數之總和為2022，求滿足這樣條件的

𝑚與𝑛，其4𝑚 + 3𝑛的最大值。 

 

解 

析 

類    型 □ 代數(A)   ▓ 數論(N)   □ 幾何(G)   □ 組合(C) 

試題出處 □ 自編      ▓ 改編於：高中數學競賽教程 

難 易 度 □ 難   ▓ 中等  □ 易 編 號 獨立研究一(2) 

解答： 

設2 ≤ 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑚為𝑚個互不相同的正偶數及1 ≤ 𝑏1 < 𝑏2 < ⋯ < 𝑏𝑛為𝑛個互不相同

的正奇數。 

由題意知2022 = 𝑎1 + 𝑎2 + ⋯ + 𝑎𝑚 + 𝑏1 + 𝑏2 + ⋯ + 𝑏𝑛 ≥ 2 + 4 + ⋯ + 2𝑚 + 1 + 3 + ⋯ +

2𝑛 − 1 = 𝑚2 + 𝑚 + 𝑛2 

故(𝑚 +
1

2
)

2

+ 𝑛2 ≤ 2022 +
1

4
 

利用柯西不等式，可得4 (𝑚 +
1

2
) + 3𝑛 ≤ 5√2022 +

1

4
 

故4𝑚 + 3𝑛 ≤ ⌊5√2022 +
1

4
− 2⌋ = 222 

取𝑚 = 36，𝑛 = 26，可得4𝑚 + 3𝑛 = 222 

取 2, 4, …, 68, 70, 72 共 36 個偶數，並取 1, 3, …,49, 51 共 26 個奇數，此時總和為 2008。 

故可取 2, 4, …, 68, 70 共 35 個偶數以及 86，並取 1, 3, …,49, 51 共 26 個奇數。 

 

  



 30 

獨立研究參考解答 
題目： 

數線上每個整數的位置有一個箱子(規定箱子編號即為其所在的整數位置)，位於原點 

的箱子(故此箱編號為0)中有一個石頭，其他箱子都是空的，每一次我們可以進行下列 

操作之一： 

(1).  (分裂)在某個非空箱子拿出一個石頭，然後在其左、右的箱子個放入一顆石頭。 

(2).  (合併)選擇編號相差2的兩個非空箱子，各拿出一個石頭，然後在中間箱子放入 

一個石頭。 

如果經過若干次操作之後，竟然只剩下一個石頭，試求出這個石頭所在箱子編號的所 

有可能。 

解 

析 

類    型 □ 代數(A)   □ 數論(N)   □ 幾何(G)   ■ 組合(C) 

試題出處 ■ 自編      □ 改編於： 

難 易 度 □ 難  ■ 中等   □ 易 編 號 獨立研究一(3) 

解答：箱子所有可能的編號為 6 的整數倍。 

首先不難操作使得只有一個石頭在編號 6 的箱子中，平移得到所有 6 的倍數皆可以。其次，

將位於編號為n的箱子中的每一個石頭賦值(
1+√3𝑖

2
)

𝑛

，則每次操作後所有石頭的賦值之和是一

個不變量。(動機是左中右為⋯ ,
1

𝑥2 ,
1

𝑥
, 1, 𝑥, 𝑥2, ⋯,要有1 + 𝑥2 = 𝑥，解得x =

1+√3𝑖

2
，即為 1 的六

次方根) 

但一開始的石頭賦值總合為 1，故除了編號為 6 的倍數外皆不可能。 
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獨立研究參考解答 
題目： 

設{𝑎𝑛}為一個無窮的整數數列，且滿足𝑎𝑛 ≠ −1， 

𝑎𝑛+2𝑎𝑛+1 + 𝑎𝑛+2 − 𝑎𝑛 − 108 = 0, 𝑛 ∈ ℕ，求這種{𝑎𝑛}的個數有多少？ 

 

解 

析 

類    型 ■ 代數(A)   □ 數論(N)   □ 幾何(G)   □ 組合(C) 

試題出處 □ 自編      ■ 改編於：大陸競賽試題 

難 易 度 □難   □中等   ■易 編 號  獨立研究二(1) 

解答：𝑎𝑛+3𝑎𝑛+2 + 𝑎𝑛+3 − 𝑎𝑛+1 − 108 = 0 

𝑎𝑛+2𝑎𝑛+1 + 𝑎𝑛+2 − 𝑎𝑛 − 108 = 0 

       𝑎𝑛+2 − 𝑎𝑛 = (𝑎𝑛+2 + 1)(𝑎𝑛+3 − 𝑎𝑛+1) 

      𝑎3 − 𝑎1 = (𝑎3 + 1)(𝑎4 − 𝑎2) 

      𝑎4 − 𝑎2 = (𝑎4 + 1)(𝑎5 − 𝑎3) 

     ……………………………... 

(i) 若𝑎3 − 𝑎1 ≠ 0，得𝑎4 − 𝑎2 ≠ 0，得𝑎5 − 𝑎3 ≠ 0，…… 

   對𝑛 ≥ 1 

   0 < |𝑎𝑛+3 − 𝑎𝑛+1| = |𝑎𝑛+2 − 𝑎𝑛| ∙
1

|𝑎𝑛+2+1|
≤ |𝑎𝑛+2 − 𝑎𝑛| 

   所以，{|𝑎𝑛+2 − 𝑎𝑛|}為非遞增正整數序列 

      存在 N，對於所有𝑛 ≥ 𝑁 

     |𝑎𝑛+2 + 1| = 1， 即對於𝑛 ≥ 𝑁 + 2，𝑎𝑛 = 0, −2 

      因為 𝑎𝑁+4 =
𝑎𝑁+2+108

𝑎𝑁+3+1
，所以 𝑎𝑁+4 之值可能為 

       
0+108

0+1
= 108，

0+108

−2+1
= −108，

−2+108

0+1
= 106，

−2+108

−2+1
= −106 

        𝑎𝑁+4 = 0, −2 所以不可能 

(ii) 若𝑎3 − 𝑎1 = 0，得𝑎4 − 𝑎2 = 0，得𝑎5 − 𝑎3 = 0，…. 

   則𝑎1 = 𝑎3 = 𝑎5 = ⋯；𝑎2 = 𝑎4 = 𝑎6 = ⋯， 

   n = 1，𝑎1 = 𝑎3 得𝑎1 =
𝑎1+108

𝑎2+1
，即𝑎1𝑎2 = 108 = 2233 

   𝑎1值的個數為 2(2+1)(3+1)去除當其值為−1, −108，所以為 22 個，𝑎2 =
108

𝑎1
 

  此數列型式為 𝑎1, 𝑎2, 𝑎1, 𝑎2, 𝑎1, 𝑎2, …. 
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獨立研究參考解答 

題目： 

     對於一個{1, 2, ⋯ , 𝑛}的排列σ = 𝜎1𝜎2 ⋯ 𝜎𝑛，定義一隨機變數𝑋如下： 

先約定𝜎0 = 𝜎𝑛+1 = 0。對1 ≤ 𝑖 ≤ 𝑛，如果𝜎𝑖−1 < 𝜎𝑖且𝜎𝑖 > 𝜎𝑖+1，則稱𝜎𝑖是一個“山

頂”。定義𝑋取值為“山頂出現的次數”。例如：53261784有三個山頂(5, 6, 8)，故

𝑋 = 3。若每個{1, 2, ⋯ , 𝑛}的排列被選取的機會相同，求𝐸(𝑋)。 

 

解 

析 

類    型 □ 代數(A)   □ 數論(N)  □ 幾何(G)   ■ 組合(C) 

試題出處 ■ 自編      □ 改編於： 

難 易 度 □ 難   ■ 中等  □ 易 編 號 獨立研究二(2) 

解答： 

考慮一表格，以排列為列，以1, 2, ⋯ , 𝑛為行，若j是𝜎𝑖的山頂，則填(𝜎𝑖, j) = ●，否則填○。

只要算有幾個●即可，關鍵是直著算。 

引理：第j行有j(j − 1)(n − 2)!個● 

證明：易得第一行沒有●，第 2 行有2 × (n − 2)!個●，第n行每個位置都是● 

對於第j行(3 ≤ j ≤ n − 1) 

1. 若𝜎1 = 𝑗為山頂，則𝜎2有j − 1種可能，故有(j − 1) × (n − 2)!種可能 

2. 若𝜎𝑛 = 𝑗為山頂，則𝜎𝑛−1有j − 1種可能，故有(j − 1) × (n − 2)!種可能 

3. 若𝜎𝑘 = 𝑗為山頂，則𝜎𝑘−1 ∈ {1,2, ⋯ , 𝑗 − 1}有j − 1種可能， 

𝜎𝑘+1 ∈ {1,2, ⋯ , 𝑗 − 1} − {𝜎𝑘−1}有j − 2種可能，故有(j − 1)(j − 2) × (n − 3)! 個●，但k有

n − 2個可能值，因此一共有 

(j − 1)(j − 2) × (n − 3)! × (n − 2) = (j − 1)(j − 2) × (n − 2)! 

個●。 

由 1+2+3 得j(j − 1) × (n − 2)!，且此式對j = 1,2, n也都成立，故引理得證。 

 

因此所求為 

E(X) = {

∑ 𝑗(𝑗 − 1)(𝑛 − 2)!𝑛
𝑗=1

𝑛!
=

𝑛 + 1

3
,   𝑛 ≥ 2

1,   𝑛 = 1
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獨立研究參考解答 

題目： 

圓內接四邊形𝐴𝐵𝐶𝐷的一組對邊𝐴𝐷和𝐵𝐶的延長線相交於點𝑃，另一組對邊𝐴𝐵和𝐶𝐷的 

延長線相交於點𝑄，∠𝑃和∠𝑄的平分線相交於點𝑅。對角線𝐴𝐶與𝐵𝐷相交於點𝐾，∠𝐷𝐾𝐶 

的平分線交𝐶𝑃於點𝑀。求證： 

(1). 𝑃𝑅 ⊥ 𝑄𝑅； 

(2). 𝑄𝑅 ⊥ 𝐾𝑀。 

 

解 

析 

類    型 □ 代數(A)   □ 數論(N)   ■ 幾何(G)   □ 組合(C) 

試題出處 □ 自編      ■ 改編於：大陸競賽訓練試題 

難 易 度 □ 難  ■ 中等   □ 易 編 號 獨立研究二(3) 

解答：  
設直線 𝑃𝑅 交 𝐷𝐶、𝐷𝐵、𝐵𝐴 分別於點 𝐸、𝐹、𝐺。 

(1)  因 ∠𝐸𝐹𝑄 = ∠𝐵𝐴𝐷 + ∠𝐴𝑃𝐹、∠𝐹𝐸𝑄 = ∠𝐷𝐶𝑃 + ∠𝐸𝑃𝐶，且 ∠𝐵𝐴𝐷 = ∠𝐷𝐶𝑃、 

∠𝐴𝑃𝐹 = ∠𝐸𝑃𝐶，所以 ∠𝐸𝐹𝑄 = ∠𝐹𝐸𝑄。 又因 𝑄𝑅 為頂角 ∠𝐹𝑄𝐸 的角平分線，故 

𝑃𝑅 ⊥ 𝑄𝑅。 

(2)  因為 

 ∠𝐷𝐾𝑀 =
1

2
∠𝐷𝐾𝐶 =

1

2
(∠𝐴𝐷𝐵 + ∠𝐷𝐴𝐶) 

 ∠𝐷𝐺𝑃 =  ∠𝐴𝐷𝐵 − ∠𝐴𝑃𝐺 =  ∠𝐴𝐷𝐵 −
1

2
∠𝐴𝑃𝐵 =  ∠𝐴𝐷𝐵 −

1

2
(∠𝐴𝐶𝐵 − ∠𝐷𝐴𝐶)  

       =
1

2
(∠𝐴𝐷𝐵 + ∠𝐷𝐴𝐶) 

 所以 ∠𝐷𝐾𝑀 = ∠𝐷𝐺𝑃，得 𝐾𝑀 ∥ 𝑅𝑃，故由(1)即得 𝑄𝑅 ⊥ 𝐾𝑀。 
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玖、111學年度各分區複賽試題 
 

 
  



 35 

 

  



 36 

 

  



 37 

 

  



 38 

 

  



 39 

 
 

 

 

 

 



 40 

 
 

 

 

 



 41 

 
 

 

 

 

 



 42 

 
 

 

 

 

 



 43 

 
 

 

 

 

 



 44 

 
 

 

 

 

 



 45 

 
 

 

 

 

 



 46 

 
 

 

 

 

 



 47 

 
 

 

 

 

 



 48 

 
 

  



 49 
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111學年度高級中學數學學科能力競賽 

    彰雲嘉區複賽試題（一）  編號：       

（時間二小時） 

注意事項： 

1. 本試卷共五題計算證明題，滿分為四十九分。 

2. 請將答案寫在答案欄內，計算紙必須連同試卷交回。 
 
 

一、已知 4 3 2 3 2( ) 6 11 6 1,  ( ) 3 2 1f x x x x x g x x x x= − + − − = − + +  是兩個整數係數多項式，

假設 ,  ,  a b c是 ( )g x 的三個相異根，求
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

f c f a f b

f a f b f b f c f c f a
+ + .  

 

二、設
1 1 2

1

2 7
2,  ,

3 3
n n

n

a a a
a

−

−

= = +  其中 2,  3,  4,  .n =   

證明：(1) 3 7 2,  na  對所有 1.n   

(2) 93

4

1
7 10 .

5
a −−    

 

 

三、求所有整數 ,  ,  x y z滿足 

3 3 3

4

88

x y z

x y z

+ + =


+ + =
  

 

 

四、某人從數線上的原點出發(第 0 步)，每一步皆獨立且隨機地往左一單位或往

右一單位，每一步往左一單位的機率為 1
3
、往右一單位的機率為 2

3
，試算

第 1 步至第 5 步之間曾經回到原點，且第 6 步位於數線-2 或 2 的機率。  

 

 

五、如圖，等腰三角形 ABC 中， 90A = ，D

為 AB的中點，線段 BC上有一點E使得

AE CD⊥ ，而線段 AE與CD交於F。試證

ADC BDE = 。 

 

 

(10 分) 

(10 分) 

(9 分) 

(10 分) 

(10 分) 
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111學年度高級中學數學學科能力競賽 

    彰雲嘉區複賽試題（二）  編號：      

（時間一小時） 

注意事項： 

1. 本試卷共七題填充題，每題 3分，滿分為二十一分。 

2. 請將答案寫在答案欄內，計算紙必須連同試卷交回。 

一、 若對每一個實數 ,x
2

0.5 0.52

2
log log 3

1

x ax

x x

+ +


− +
 恆成立。 

求實數 a的範圍         。 

 

二、 在複數平面上，設  2 2: , , 1 .D z a bi a b a b= = +  + =  

求 2 6z z+ −  在D上之最大值為       . 

 

三、 有一組座標 ( ,  )n na b ，其中 na 是正整數，0 1nb  ；若給定 1 1( ,  )a b 之後， 

下一個座標的規則如下： 

1 1 1

1 1
,  n n n

n n

a b a
b b

+ + +

 
= = − 
 

，其中 x 表示小於或等於 x 的最大整數。 

若 1 1( ,  ) (1,  2 3)a b = − ,試求出 2022 2022( ,  )a b =         . 

 

四、 如圖，有一個邊長為 6 的正方形 ,ABCD  點E為 AB的中

點，點 ,F G為CD的三等分點。連接 ,  ,  ,  AF AG DE DB 之

後四直線圍出一個四邊形 ,PQRS  試求四邊形 PQRS的

面積為       。 

 

五、 求 3 1733.1之值為       (四捨五入至小數點後第 3位)。 

 

六、 西夏國要徵駙馬，進入到最後冠軍戰，虛竹跟慕容復將進行最後的冠軍戰。

決戰方式是由公主出一題猜謎，兩人答題分獨立兩處進行，因為虛竹看起

來較笨，所以他要在三次以內答對公主的題目，慕容復則需要在兩次以內

答對，才能成為駙馬。假設虛竹每次答對的機率是
1

9
，則慕容復每次答對

的機率至少要多少，他的當選機率會超過虛竹?        (答案請寫至小數

點後第二位)。 
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七、 將1,  2,  3,  4,  5,  6,  7,  8八個數字排成一個可以被 11 整除的八位數，共有 x 種

排法。則 x =       . 
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111 學年度高級中學數學學科能力競賽 

嘉義區複賽試題（一）【解答】 

一、【解】 

由除法原理 ( ) ( 3) ( ) 2f x x g x x= − + −   

知 ( ) 2 ,  ( ) 2 ,  ( ) 2f a a f b b f b c= − = − = −   

由根與係數 3 2( ) 3 2 1 ( )( )( )g x x x x x a x b x c= − + + = − − −  

知 3,  2, (2) (2 )(2 )(2 ) 1a b c ab bc ca g a b c+ + = + + = = − − − =   

原式
( ) ( ) ( )

 
( ) ( ) ( ) ( ) ( ) ( )

f c f a f b

f a f b f b f c f c f a
+ +  

2 2 2

2 2 2

( ) ( ) ( )

( ) ( ) ( )

(2 ) (2 ) (2 ) 5
5

(2 )(2 )(2 ) 1

f c f a f b

f a f b f c

a b c

a b c

+ +
=

− + − + −
= = =

− − −

 

因為 2 2 2  (2 ) (2 ) (2 )a b c− + − + −  
2

2 2

2 2

((2 ) (2 ) (2 )) 2((2 )(2 ) (2 )(2 ) (2 )(2 ))

(6 ( )) 2(3 2 4( ) ( ))

(6 3) 2(3 2 4 3 2) 5

a b c a b b c c a

a b c a b c ab bc ca

= − + − + − − − − + − − + − −

= − + + −  − + + + + +

= − −  −  + =

 

 

 

二、【解】 

(1)對於 1n =   不等式 

3 7 2na  …(*) 

顯然成立。 

假設 ,n k= 這不等式(*)成立。 

當 1,n k= + 現在利用算術平均數大於等於幾何平均數，得 

3

1 2 2

2 7 1 7
( ) 7

3 3 3
k k k k

k k

a a a a
a a

+ = + = + +   

因為 ka 為有理數，所以 3

1 7ka +   

此外
3

1 2 2

2 7 2
2

3 3 3 3

k
k k k k

k k

a
a a a a

a a
+ = +  + =   

由數學歸納法知 3 7 2,  na  對所有 1.n   
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(2)令 3 7 = ，則 3 7 = 且 

3

1 2

3 2 3

2

2 2 2

2

2
 

3 3

1
(2 3 )

3

(2 ) 1 1
( ) ( ) ( )

3

n n

n

n n

n

n
n n n

n n

a a
a

a a
a

a
a a a

a a


 

 


  



+ − = + −

= − +

+
= −  −  −

 

由於 3 3 2 2

1 1 1 1( )( )a a a a   − = − + +  

2

1 1( )(4 2 ) 10( )a a   = − + +  −   

知
1

1
,

10
a −   

所以 

2 4 8

4 3 2 13 7

8 9

1 1 1
( ) ( ) ( )

1 1
10 10

49 5

a a a a   
  



− −

−  −  −  −

 

  

 

三、【證明】 

將 yxz −−= 4 代入 88333 =++ zyx  

得 88)4( 333 =−−++ yxyx  

展開上式得 88)()(12)(4864 3233 =+−+++−++ yxyxyxyx  

利用 )(3)( 333 yxxyyxyx +++=+ 代入上式再提出 yx + 項 

   得因式分解 )1.......(..........8)16)(4)(( =−−++ xyyxyx  

   由對稱性可設 zyx  再由(1)式可知 4,2,1=+ yx 或8  

   Case 1. 1=+ yx . 代入(1 )式得 816)1(4 =−−− xx   

                   故 0202 =−− xx  解得 4,5 −=x  此時 4,5 −== yx  

                   代回得 3,4,5 =−== zyx (不合) 

   Case 2. 2=+ yx . 代入(1 )式得 416)1(8 =−−− xx   

                   故 01222 =−− xx  解得 x 無整數解 

   Case 3. 4=+ yx . 代入(1 )式得 216)1(16 =−−− xx   

                   故 0242 =−− xx   解得 x 無整數解 

   Case 4. 8=+ yx . 代入(1 )式得 116)1(32 =−−− xx   

                   故 01582 =+− xx  解得 3,5=x  此時 3,5 == yx  

                   代回得結論 4,3,5 −=== zyx  

   因此 zyx ,, 的所有整數解為

)5,3,4(),3,5,4(),4,5,3(),5,4,3(),3,4,5(),4,3,5(),,( −−−−−−=zyx  
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四、【解】 

(Method 1) 

令第 k 步在數線上的位置為 xk；每一步往右的機率為 p=2/3、往左的機率為

q=1-p=1/3。 

    因僅會在偶數步時回到原點，令事件 A 為( 2 0=x )、事件 B 為( 4 0=x )。 

    ( ) ( ) 6 62 2  = −  =  P A B x x ( ) ( )  ( ) ( ) 6 62 2=   = − +   =P A B x P A B x  

( ) ( ) ( )  ( ) ( ) ( ) 6 62 2   =    = − +    =
   

c cP A A B x P A A B x  

( )  ( ) ( )  ( )  ( ) ( ) 6 6 6 62 2 2 2=  = − +   = − +  = +   =c cP A x P A B x P A x P A B x  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

6 6

6 6

2 2

2 2

c c

c c

P A P x A P A B P x A B

P A P x A P A B P x A B

=  = − +   = − 

+  = +   = 
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

6 6

6 6

2 2

  + 2 2

=  = − + −   = −   

 = + −   =   

c

c

P A P x A P B P A B P x A B

P A P x A P B P A B P x A B
 

( ) ( )

( ) ( )

4 1 3 2 2 2 0 2

1 0

4 3 1 2 2 2 2 0

3 2

2! 4! 2! 2!

1!1! 2!2! 1!1! 1!1!

2! 4! 2! 2!
 

1!1! 2!2! 1!1! 1!1!

   
=  + −     
   

   
+  + −     
   

pq C p q p q C p q

pq C p q p q C p q

 

2 4 4 210 10= +p q p q

2 4 4 2
2 1 2 1

10
3 3 3 3

        
= +                 

200

729
=  

(Method 2) 

假設 x 座標代表到達的位置，y 座標代表走的步數；每一步往右的機率為 p、往左

的機率為 q。 

⚫ 假設第一步走到(1,1)，則前五步一定要碰到 y 軸(x=0)，第六步要走到(2,6)的

路徑，一定有一條從 (-1,1)走到(2,6)的路徑與之對應，所以可能的路徑數為 5

2C ，

也就是往右走 4 步，往左走 2 步。每一個路徑發生的機率為 4 2p q ，所以這種

情況之下的機率為 5 4 2

2C p q 。 

⚫ 假設第一步走到(-1,1)，則前五步一定要碰到 y 軸(x=0)，第六步要走到(-2,6)

的路徑數，根據反射原理，等於第一步走到(1,1)，第六步要走到(-2,6)的路徑

數，亦為 5

2C ，即必須要往右走 2 步，往左走 4 步，每一個路徑發生的機率為 2 4p q ，

所以這種情況之下的機率為 5 2 4

2C p q 。 
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所以滿足題意的機率為 
5 4 2 5 2 4

2 2C C+p q p q

4 2 2 4
2 1 2 1

10
3 3 3 3

        
= +                 

200

729
=  

 

五、【證明】 

如右圖所示，將 AE延長，並在 AE的延長線上

找一點G使得GB AB⊥ . 

考慮： CAD 與 ABG ,因為

90 ,CAD ABG = =  而 (CA AB ABC=  為等

腰三角形），又

90 ,FAC ACD FAC BAG + =  = + 得到

.ACD BAG =  

因此 (CAD ABG ASA   全等），於是

,BG AD BD= =  且 .BGA ADC =  

再看 DBE 與 GBE ，因為 , 45 ,BD BG DBE GBE=  = =  且 ,BE BE=  

所以 (DBE GBE ASA   全等），於是 

.BDE BGE BGA ADC = = =  
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111學年度高級中學數學學科能力競賽 

嘉義區複賽試題（二）【解答】 

一、【解】 

(ｉ)真數
2

2

2
0

1

x ax

x x

+ +


− +
 恆成立，但 2 1 0x x− +   恆真  

2 2 0x ax + +   恆成立  判別式 2 8 0D a= −    

2 2 2 2a−   ……(1) 

(ii)不等式
2

0.5 0.52

2
log log 3

1

x ax

x x

+ +


− +
恆成立 

2

2

2
3

1

x ax

x x

+ +
 

− +
 恆成立 2 23( 1) 2x x x ax − +  + +  恆成立 

22 (3 ) 1 0x a x − + +   恆成立  判別式 2(3 ) 8 0a+ −    

3 2 2 3 2 2a − −   − +  ……(2) 

取(1)(2)交集得 2 2 3 2 2a−   − +  

 

二、【解】 

令 cos sinz i = +  考慮 

2 2 22 6 3 2 ,z z z z+ − = + −   

2 2 23 (cos 3) sin 10 6cos ,z   + = + + = +   

2 2 22 (cos 2) sin 5 4cosz   − = − + = −  

因此
2 2

3 2 (10 6cos )(5 4cos )z z  + − = + −  

2

2

24cos 10cos 50

5 25
24(cos ) 50

24 24

 



= − − +

= − + + +
  

當
5

cos
24

 = −  時，
2 2

3 2z z+ − 有最大值
25 1225

50
24 24

+ =  

因此 2 1225 35 35
max 6 6

24 122 6z D
z z


+ − = = =  
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三、【解】 

1
2 3,

2 3
= +

−
 可求得 2 2( ,  ) (3,  3 1)a b = −   

1 1
(1 3),

23 1
= +

−
可求得

3 3

1
( ,  ) (1,  ( 3 1))

2
a b = −  

2
3 1,

3 1
= +

−
可求得 4 4( ,  ) (2,  3 1)a b = −  

5 5

1
( ,  ) (1,  ( 3 1))

2
a b = −  

可推論 2022 2022( ,  ) (2, 3 1)a b = −   

 

四、【解】 

如右圖，連接 ,SQ  並將它延長至與 AD相交為 .H   

可證HQ與 AB還有CD 平行。 

(A)假設 , , 6 .HS SQ x AH y HD y= = = = −   

利用 (AHS ADF AA  相似)得到
6

2

y

x
= , 

由 (DHS DAE AA  相似)得到
6 6

,
3

y

x

−
=  

於是6 2 3(6 )x y y= = −  解得 

18 12
, 6 ,

5 5
AH y HD y= = = − =  以及

6
.

5
x HS SQ= = =   

(B)梯形SQGD 的面積為
6 12
5 5( 4) 156

;
2 25

+
=   

而梯形QSAB 的面積為
6 18
5 5( 6) 324

.
2 25

+
=  

(C)假設 PSQ 的面積為 1A 利用 (PSQ PDG AA  相似)得到 

26
51

12156
1 25

( ) 108
.

4 175

A
A

A
=  =

+
  

(D)假設 RSQ 的面積為 2A 利用 (RSQ RAB AA  相似)得到 
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26
52

22324
2 25

( ) 27
.

6 50

A
A

A
=  =

+
 

(E)因此PQRS 面積為
1 2

81

70
A A+ = . 

 

五、【解】 

解: 首先， 312 1728= . 

令 3 1733.1 12 ,   0.a a= +    

則 3 2 31733.1 (12 ) 1728 3 144 3 12a a a a= + = +  +  + ， 

5.1 ( ),f a =　　　　  其中 2 3( ) 432 36 .f a a a a= + +  

因為 (0.012) 5.1f   且 (0.0115) 5.1f    

所以 0.012a  , 3 1733.1  約為 12.012。 

 

 

六、【解】 

虛竹成為駙馬的機率為 
2

1 8 1 8 1 217
.

9 9 9 9 9 729

 
+  +  = 

 
  

假設慕容復每次答對的機率為 p  ，則他成為駙馬爺的機率為 (1 )p p p+ − . 

所以 
217

(1 )
729

p p p+ −   

 2729 1458 217 0p p− +   

 0.1619 1.8381p   

   因此，慕容復每次答對的機率至少要 0.17，他當選的機率才會超過虛竹。 
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七、【解】 

若abcd e f g h被 11 整除，   , , , , , , , 1,2,3,4,5,6,7,8a b c d e f g h =   

由10 1(mod11),10 ( 1) (mod11),k k= − = −   

得 ( ) 0(mod11)a c e g b d f h+ + + − + + +    

所以 ( ) ( ) 11a c e g b d f h k+ + + − + + + =       -(1) 
8

1

( ) ( ) 36
i

a c e g b d f h i
=

+ + + − + + + = =   -(2) 

由(2)知： ,a c e g b d f h+ + + + + +  同奇，同偶 

由(1)知： ( ) ( ) 0 22a c e g b d f h or+ + + − + + + =    -(3) 

解(2)(3)得 18a c e g b d f h+ + + = + + + =   

考慮分解有 8的計有 1278 (配3456) , 

1368 (配2457), 

1467(配2358), 

1458 (配2367). 

所以 , , ,a c e g  有8種可能。 

因此共計有8 4! 4! 8 24 24 4608  =   =   
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111 學年度台南區高級中學數學科能力競賽試題（一） 

注意事項： 

(1) 作答時間：2 小時。不可使用電算器。 

(2) 本試卷共四題，滿分 49 分，第一題 12 分，第二題 12 分，第三題 12 分，  

    第四題 13 分。  

(3) 須將計算及證明過程依序寫在答案卷上。 

(4) 試題紙及計算紙必須連同答案卷一併繳回。 

(5) 需使用黑色或藍色筆作答 

 

 

一、  若 a、b、c、d、e 均是正數，滿足 1=abcde ，試證明  

            5
1

1

1

1

1

1

1

1

1

1 22222


+

+
+

+

+
+

+

+
+

+

+
+

+

+

e

e

d

d

c

c

b

b

a

a
    

 

二、在 ABC 中， A 與 B 皆為銳角，如果 2 2sin sin sinA B C+ = ，試求 C 的   

    度數。 

 

三、已知𝑥 ≤ 0且𝑥2 + (𝑦 − 2)2 = 1，試求  
3𝑥2−2√3 𝑥𝑦+5𝑦2

𝑥2+𝑦2   的最大值及 

    最小值。 

 

四、已知 , ,a b c為 𝑥3 + 3𝑥2 − 2𝑥 − 1 = 0 的三個解，試證: 

       
𝑎111+𝑏111

𝑎+𝑏
+

𝑏111+𝑐111

𝑏+𝑐
+

𝑎111+𝑐111

𝑎+𝑐
 必為一個整數。 
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111 學年度台南區高級中學數學科能力競賽試題（二） 

注意事項： 

(1)作答時間：1 小時。不可使用電算器。 

(2)本試卷共六題填充題，前三題每題 3 分，後三題每題 4 分，滿分 21 分。 

(3)請將答案及演算結果依序寫在答案卷上。              

(4)試題紙與計算紙必須連同答案卷一併繳回。 

  (5)需使用黑色或藍色筆作答 

 

 

一、 已知方程式 𝑥3 + 5𝑥2 + 7𝑥 + 13 = 0 的解為 𝑎, 𝑏, 𝑐，且方程式  

    𝑥3 + 𝑟𝑥2 + 𝑠𝑥 + 𝑡 = 0的解是𝑎 + 𝑏, 𝑏 + 𝑐, 𝑐 + 𝑎，則 𝑟 + 2𝑠 + 3𝑡之值為 

    ________。  

 

二、試求 )18sin1log(18sinlog2  ++  之值為_______。 

 

三、已知 ABC 中， AB AC= ，且 B 的角平分線交 AC 於D點，且BC BD AD= + ， 

  A 的度數為________。 

 

 

四、若𝑥 ≥ 1, 𝑦 ≥ 1, 且 (log 𝑥)2 + (log 𝑦)2 = log(10𝑥4) + log(10𝑦4)，則 

 log( 𝑥𝑦)的最大值為_________及最小值為__________。 

 

五、設 ,x y為介於 1−  和 1 之間的實數，如果 111 22 =−−− xyyx ，則 722 ++ yx  之

值為____________。 

 

六、令 ( )d n 代表正整數 n 所有正因數的和，例如 (12)d =1+2+3+4+6+12=28， 

    則滿足 ( ) 120d n = 的所有 n 值為_________。 
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【口試題】令𝑄+為正有理數集，已知函數𝑓: 𝑄+ → 𝑄+且有𝑓(𝑥𝑓(𝑦)) =
𝑓(𝑥)

𝑦3
。 

            若 𝑓(3) = 𝑎且𝑓(7) = 𝑏，試求𝑓(189)之值。 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

【口試題】對任意自然數 k，令
2

1
1

k
ak += 。試證明: 

          420222021321

2022

1

=
=

aaaaaa
k

k  。 
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111學年度高級中學數學科能力競賽複賽試題 

         南區（高雄區）   筆試（一）    編號：________________ 

注意事項：                                                 

(1)時間分配：2 小時 

(2)本試卷共四題，滿分 49 分。第一題 12 分，第二題 12 分，第三題 12 分，第四題 13 分 

(3)將計算ヽ證明過程依序寫在答案卷上。  

(4)不可使用電算器。  

(5)試題、答案卷及計算紙須一同繳回。 

 

一、設整數 a 使得方程式 88662)8(2 −=++− axaxa 有整數解，求 a

的所有可能值為何? 

 

二、設 𝑥2 + 2𝑥 − 2 = 0 的二根也為 𝑥4 − 2𝑎𝑥2 + 𝑏 = 0 的根。求 a，b 之值

為何？ 

 

三、將 1, 2, 3, …, 100 排成一排，使得每個數都嚴格大於排在他前面的任

何數，或是嚴格小於排在他前面的任何數(例如:將 1, 2, 3 排成一排為

(1, 2, 3),(2, 3, 1), (3, 2, 1), …)。請問有多少種排列方式? 

    (給予的答案須予以證明) 

 

四、求最小的正整數𝑛 (𝑛 > 24)，使得
12+22+⋯+𝑛2

𝑛+1
為完全平方數。 
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111學年度高級中學數學科能力競賽複賽答案卷(試題) 

南區（高雄區）     筆試（二）    編號：________________ 

注意事項： 

(1)時間分配：1 小時 

(2)本試卷共 7題，每題 3分滿分 21 分。 

(3)不可使用電算器。 

(4)將答案填入前面之答案欄內。 

(5)答案卷(試題)及計算紙須一同繳回。 

 

填充題答案欄: 

1._____________      2.________________     3.____________ 

 

4._____________      5._________________    6._____________ 

 

7._____________ 
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1. 已知𝑓(𝑥) = 𝑥2 + (log 𝑎 + 3)𝑥 + log 𝑏， 𝑓(−1) = −3，若對所有實數 x，   

 𝑓(𝑥) ≥ 3𝑥 均成立，求 a + b = _____________ 

 

2. 設 a,b 均為實數，已知 (𝑥3 + 2𝑥2 + 𝑎𝑥 − 5)(𝑥3 − 𝑎2𝑥 + 2)(2𝑥2 + 𝑏) = 𝑎8𝑥8 +

𝑎7𝑥7 + 𝑎6𝑥6 + ⋯ + 𝑎1𝑥 + 𝑎0，且 𝑎8 + 𝑎6 + 𝑎4 + 𝑎4 + 𝑎0 = 𝑎7 + 𝑎5 + 𝑎3 + 𝑎1，

求 a，b 之值為_____________________ 

 

3. 已知 𝑎2 − 𝑏2 = 6，(𝑎 − 𝑏)2 = 4，求 𝑎2+ 𝑏2 = _______________ 

 

4. 求 
𝑥4−3𝑥2+5

(𝑥2−1)2
 (𝑥 ≠ ±1)的最小值為________________ 

 

5. 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔 為連續且遞增的正奇數，已知𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒 + 𝑓 + 𝑔 為完全

平方數，𝑏 + 𝑐 + 𝑑 + 𝑒 + 𝑓 為完全立方數，求𝑎 的最小值為________________ 

 

6.如左圖，有一個直角三角形紙片 ABC，角 ACB 為直角。在 AB 邊上取一點 D

使得 CD 為 AB 邊上的高，且 BD = 2AD。如右圖，將紙片沿著 CD 邊折起，讓

兩個面夾 60 度。此時三角型紙片上點 A 的位置為𝐴′，令角𝐴′𝐶𝐵 = 𝛼，則cos 𝛼 

= __________ 

 

 

7. 設 a, b, c, d 為正整數，且滿足𝑎5 = 𝑏2, 𝑐4 = 𝑑7 及 𝑑 − 𝑎 = 31， 

   求 𝑐 − 𝑎  =___________ 
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111學年度高級中學數學科能力競賽複赛試題 

第 5區(屏東高中) 筆試(一) 編號: ╴╴╴╴╴╴╴╴╴╴╴ 

注意事項: 

(1)時間分配:2小時  

(2)本試卷共四题,滿分 49分第一题 12分,第二题 12分,第三题 12分,第四题 13分 

(3)將計算、證明過程依序寫在答案卷上。 

(4)不可使用電算器。 

(5)試題與答案卷一同缴回。 

 

一、令 30432 +++ zyxw ，試證 10log3log)log( 2222 ++++ zyxw  

 

二、(1) 在平面上找六個點，使得可以用這六個點連出 11條平行 X軸、垂直 X軸、斜

率為 1或-1 的直線。 

(2) 證明無法在平面上找六個點，使得可以用這六個點連出至少 12條平行 X軸、

垂直 X軸、斜率為 1或-1的直線。 

 

三、如下圖所示，△ 𝐴𝐵𝐶 的三條中線分別為 𝐴𝐷̅̅ ̅̅ 、𝐵𝐸̅̅ ̅̅ 、𝐶𝐹̅̅̅̅ 。 若 △ 𝐴𝐵𝐶 的面

積為 1 則以 𝐴𝐷̅̅ ̅̅ 、𝐵𝐸̅̅ ̅̅ 、𝐶𝐹̅̅̅̅  的長度為三邊長的三角形的面積等

於           。 

 

 

 

 

 

 

 

 

 

四、矩陣運算規則𝐴 = [
𝑎 𝑏
𝑐 𝑑

] , 𝐵 = [
𝑝 𝑞
𝑟 𝑠

]，𝐴 + 𝐵 = [
𝑎 + 𝑝 𝑏 + 𝑞
𝑐 + 𝑟 𝑑 + 𝑠

]，𝐴𝐵 =

[
𝑎𝑝 + 𝑏𝑟 𝑎𝑞 + 𝑏𝑠
𝑐𝑝 + 𝑑𝑟 𝑐𝑞 + 𝑑𝑠

] 

設 𝐴 = [
1 −√3

√3 1
]。   

(1) 若 𝐴3 = 𝑎𝐼2 ，其中 𝑎 為實數且 𝐼2 = [
1 0
0 1

]，則 𝑎 =               。 

(2) 𝐴 + 𝐴4 + 𝐴7 + ⋯ ⋯ + 𝐴100 =                         。 

 

A 

B C D 

E F 
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111學年度高級中學數學科能力競賽複赛試題 

第 5區(屏東高中) 筆試(二) 編號: ╴╴╴╴╴╴╴╴╴╴╴ 

注意事項: 

(1)時間分配 1小時  

(2)本試卷共四题,滿分 21分第一题 5分,第二题 5分,第三题 5分,第四题 6分 

(3)將計算、證明過程依序寫在答案卷上。 

(4)不可使用電算器。 

(5)試題與答案卷一同缴回。 

 

五、題組 

(1) 證明無法將一個正三角形分割為 2、3或 5個正三角形。 

(2) 設𝑛為正整數。證明若𝑛 = 4或𝑛 ≥ 6，則可將一個正三角形分割為𝑛個正三角

形。 

 

六、如下圖，在平面直角坐標系中，直線 𝑦 = −
1

3
𝑥 + 2 交 𝑥軸於點𝑃，交 𝑦軸於點𝐴。 

拋物線 𝑦 = −
1

2
𝑥2 + 𝑏𝑥 + 𝑐 的圖形通過點𝐸(−1,0)，並與直線相交於𝐴、𝐵兩點。 

(1) 求拋物線的方程式; 

(2) 若點𝑀在坐標軸(x 軸 或 y 軸)上使得 𝐴𝑀̅̅̅̅̅ ⊥ 𝐵𝑀̅̅ ̅̅̅，試求點𝑀的座標。 

 

 

 

 

 

 

 

 

 

 

七、令 𝑛 為任意大於1的整數，𝑇為所有𝑛2的因數和，𝑘為𝑛2的因數的個數，試證 𝑇 >

𝑘𝑛。 

 

八、令 dcba ,,, 為正實數且 42222 =+++ dcba ，試證 

2
1

1

1

1

1

1

1

1


+
+

+
+

+
+

+ dacdbcab  

 

A 

B 

C 

E 
O P x 

y 
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【口試題】 

 

問題：已知6! = 8 × 9 × 10，試求出所有的正整數𝑛，使得𝑛!能表示為𝑛 − 3個連續正整

數之乘積。 

 

 

 

 

 

 

 

 

 

 

 

 

 

【口試題】 

 

a) 令 0,0  ba ，試證 2)
2

(
ba

ab
+

  

b) 令 0,0,0,0  dcba ，試證 4)
4

(
dcba

abcd
+++

  

c) 令 0,0,0,0  dcba 且 1=+++ dcba ，試證 dacdbcababcd +++3  

 

  


