- 1. $m, n \in \mathbb{R}$, $f(x) = x^3 + mx^2 + nx 2 = 0$ $f \triangleq \mathbb{R}k, 2k 3i$, x = x + n = 0
- 2. 10×10的方格裡,求總和。

1	3	5	7	9	11	13	15	17	19
3	1	3	5	7	9	11	13	15	17
5	3	1	3	5	7	9	11	13	15
7	5	3	1	3	5	7	9	11	13
9	7	5	3	1	3	5	7	9	11
11	9	7	5	3	1	3	5	7	9
13	11	9	7	5	3	1	3	5	7
15	13	11	9	7	5	3	1	3	5
17	15	13	11	9	7	5	3	1	3
19	17	15	13	11	9	7	5	3	1

- 3. 有甲乙丙丁……等九人平分三組,求甲乙不同組,丙丁同組的方法數。
- 4. 有一圓 C_1 之圓 $\sim O$ 落在 C_2 圓上,圓 C_1 與 C_2 相交於兩點X,Y,且 C_2 有一點Z,若 $\overline{XZ}=13,\overline{OZ}=11,\overline{YZ}=7$,求 C_1 之半徑長。
- 5. $\vec{a} \times \vec{b} = (-2,2,1), \vec{a} \times \vec{c} = (2,1,2), |\vec{a}| = 6, 且 \vec{u} = (1,-2,3), 求 \vec{a}, \vec{u}$ 所張成的平行四邊形面積。
- 6. 有一橢圓其長軸與x軸垂直,有一直線L:5x-4y=27通過橢圓兩頂點,其中離直線 較遠的焦點F(3,1),求橢圓方程式。
- 7. $|Z_1 (3+3i)| = 2$, $|iZ_2 1| = 1$, |z| = 1
- 8. 有一拋物線 $f(x) = x^2 + bx + c$,且與x軸交兩點(1,0),(a,0),其中a > 1, 若f(x)在開區間(1,a)所圍的區域面積 為 在開區間(0,1)所圍的區域面積的 2 倍, 求a之值。
- 9. $f(x) = -x^3 3x^2 + 3=0$,有實根 $a_1 < a_2 < a_3$, 求(1) $f(x) = a_1$, $f(x) = a_2$, $f(x) = a_3$ 的相異實根個數(各別)。 (2) f(f(x))=0 有幾個相異實根。
- 10. α , β 為 $x^2-x-94=0$ 之雨根, $A=(1+\alpha^3+\beta^3+16)^n$ 為一個k位數,其中k為四位整數,且 $\log n$ 的尾數與 $\log 3$ 相同,求k值。

(1)	(2)	(3)	(4)	(5)	
-1	760	50	$\sqrt{30}$	$6\sqrt{5}$	
(6)	(7)	(8)	(9)	(10)	
$\frac{(x-3)^2}{4} + \frac{(y+\frac{1}{2})^2}{\frac{25}{4}} = 1$	8	2+√3	(1)1, 1, 3 (2)5	7432	