臺中市立臺中女子高級中等學校 107 學年度第一次教師甄選 <u>數學科</u> 試題 壹、填充題(I)(每題 5分, 共 55分)

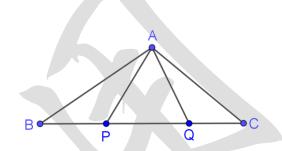
- 1. $\triangle ABC$ 中,A 坐標為(-2,5), $\angle B$ 與 $\angle C$ 的內角平分線方程式分別為 L: 2x-3y+4=0 與 M: x+2y+2=0,則 C 點的坐標為____。
- 2. 設 $a \cdot b \cdot c \cdot d$ 成等差數列,且實數 $x \cdot y \cdot z \cdot u$ 滿足 $\begin{cases} a+b+c+d=60 \\ x+y+z+u=12 \\ az+bu+cx+dy=168 \end{cases}$

則 ay + bx + cu + dz = _____ 。

3. 如右圖,在 $\triangle ABC$ 中,P、Q在 \overline{BC} 上,

 $\overline{BP} = 12$, $\overline{PQ} = 15$, $\overline{CQ} = 9$, $\angle BAP = \angle CAQ$,

 $\overline{AC} = 20$, $\overline{AB} = \underline{\hspace{1cm}}$



- 4. 設國文考科分成兩部分,一部分是測驗成績、另一部分是寫作成績。某校某次國文測驗成績平均為62分,標準差為15分;寫作成績平均為18分,標準差為5分。測驗成績與寫作成績的相關係數為0.6,國文考科的總成績為測驗成績與寫作成績之和,則總成績的標準差為_____分。
- 6. 設 O 為拋物線 $y=4x^2$ 的頂點,若拋物線上異於 O 的兩動點 $A \times B$ 滿足 $|\overrightarrow{OA}+\overrightarrow{OB}|=|\overrightarrow{OA}-\overrightarrow{OB}|$,則 \overrightarrow{AB} 中點 P 的軌跡方程式為_____。
- 7. $\lim_{n\to\infty} \left(\frac{1^3 + 2^3 + 3^3 + \dots + n^3}{(\sqrt[3]{1} + \sqrt[3]{2} + \sqrt[3]{3} + \dots + \sqrt[3]{n})^3} \right) \gtrsim \text{ if } \beta$
- 8. 設兩複數 α, β 滿足 $\alpha^2 3\alpha\beta + 9\beta^2 = 0$,且 α 滿足 $|\alpha| = 3$,則 $|\alpha + \beta| = ______$ 。
- 9. 將菱形 ABCD 的紙張沿 BD 將 ΔBCD 往上摺,直到 C 點的投影 P 點正好落在 ΔABD 的重心上,設此時平面 ABC 與平面 ABD 之兩面角為銳角 θ ,若 $\overline{AC}=12$, $\overline{BD}=6$,則 $\tan\theta$ 的值為_____。

- 10. 已知 $y=2^{k\sin^2 x}$ 與 $y=4\sqrt{3}\csc x$ 在 $-\pi \le x \le \pi$ 的範圍內交於 A ,B 兩點,若 $\overline{AB}=\frac{\pi}{3}$,則實數 k 之值為_____。
- 11. 某公司尾牙舉辦「四四如意·百倍奉還」抽獎活動,其規則如下:

「在一個不透明的箱中放入標有連號 1、2、3、...、106 之號碼球各 1 顆(共 106 顆),抽獎者由箱中一次抽出 4 顆號碼球,其中最大號碼的 100 倍即為該抽獎者所得之獎金」,則抽獎者所得獎金的期望值為 _______

貳、填充題(Ⅱ)(每題6分,共30分)

- 12. 兩相異平行直線 L_1 , L_2 皆為曲線 C : $y=x^3$ 之切線,分別過兩切點作 L_1 , L_2 的法線 M_1 , M_2 ,若四條直線 M_1 , M_2 , L_1 , L_2 所圍成的四邊形面積為 $\frac{60}{7}$,則直線 L_1 之斜率為_____。
- 13. 圓 $C: x^2 + y^2 = 25$ 上有兩點 $A(3,4) \times B(-5,0)$,有一拋物線 Γ 同時切圓 $C: x^2 + y^2 = 25$ 於 $A \times B$ 兩點,則拋物線 Γ 之焦點坐標為_____。
 - 14. 方程式 $\sqrt{1-x} = 2x^2 1 + 2x\sqrt{1-x^2}$ 之正實數解 $x = _____$ 。
- 15. 設 $f(x) = \frac{\sin x}{\sqrt{4\cos x + 5}}$, 其 中 $x \in \mathbb{R}$,已知 f(x) 的值域為區間[a ,b] ,則數對(a ,b)=____。
- 16. 設 $a \cdot b$ 為實數,且方程式 $x^3 + ax^2 + bx = 8$ 有三個正根,則b-2a的最小值為_____。

参、計算與證明題(共15分,請寫出詳細計算與證明過程,否則不予計分)

- 1. 設 $a \cdot b$ 為兩質數,且 $p = a^b + b^a$ 也為一質數,試求所有解(a,b),並請詳述理由。(7 分)
- 2. 設 $a \cdot b \cdot c$ 皆為正實數,試證: $\sqrt{ab(a+b)} + \sqrt{bc(b+c)} + \sqrt{ca(c+a)} \le \frac{3}{2} \sqrt{(a+b)(b+c)(c+a)} \circ (8 \ \%)$