Polynomials Problems

Amir Hossein Parvardi *

March 20, 2011

1. Find all polynomial P satisfying: $P\left(x^{2}+1\right)=P(x)^{2}+1$.
2. Find all functions $f: \mathbb{R} \rightarrow R$ such that

$$
f\left(x^{n}+2 f(y)\right)=(f(x))^{n}+y+f(y) \quad \forall x, y \in \mathbb{R}, \quad n \in \mathbb{Z}_{\geq 2} .
$$

3. Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
x^{2} y^{2}(f(x+y)-f(x)-f(y))=3(x+y) f(x) f(y)
$$

4. Find all polynomials $P(x)$ with real coefficients such that

$$
P(x) P(x+1)=P\left(x^{2}\right) \quad \forall x \in \mathbb{R}
$$

5. Find all polynomials $P(x)$ with real coefficient such that

$$
P(x) Q(x)=P(Q(x)) \quad \forall x \in \mathbb{R} .
$$

6. Find all polynomials $P(x)$ with real coefficients such that if $P(a)$ is an integer, then so is a, where a is any real number.
7. Find all the polynomials $f \in \mathbb{R}[X]$ such that

$$
\sin f(x)=f(\sin x),(\forall) x \in \mathbb{R}
$$

8. Find all polynomial $f(x) \in \mathbb{R}[x]$ such that

$$
f(x) f\left(2 x^{2}\right)=f\left(2 x^{3}+x^{2}\right) \quad \forall x \in \mathbb{R}
$$

9. Find all real polynomials f and g, such that:

$$
\left(x^{2}+x+1\right) \cdot f\left(x^{2}-x+1\right)=\left(x^{2}-x+1\right) \cdot g\left(x^{2}+x+1\right)
$$

for all $x \in \mathbb{R}$.
10. Find all polynomials $P(x)$ with integral coefficients such that $P\left(P^{\prime}(x)\right)=$ $P^{\prime}(P(x))$ for all real numbers x.

[^0]11. Find all polynomials with integer coefficients f such that for all $n>2005$ the number $f(n)$ is a divisor of $n^{n-1}-1$.
12. Find all polynomials with complec coefficients f such that we have the equivalence: for all complex numbers $\mathrm{z}, z \in[-1,1]$ if and only if $f(z) \in[-1,1]$.
13. Suppose f is a polynomial in $\mathbb{Z}[X]$ and m is integer .Consider the sequence a_{i} like this $a_{1}=m$ and $a_{i+1}=f\left(a_{i}\right)$ find all polynomials f and alll integers m that for each i :
$$
a_{i} \mid a_{i+1}
$$
14. $P(x), Q(x) \in \mathbb{R}[x]$ and we know that for real r we have $p(r) \in \mathbb{Q}$ if and only if $Q(r) \in \mathbb{Q}$ I want some conditions between P and Q. My conjecture is that there exist ratinal a, b, c that $a P(x)+b Q(x)+c=0$
15. Find all polynomials f with real coefficients such that for all reals a, b, c such that $a b+b c+c a=0$ we have the following relations
$$
f(a-b)+f(b-c)+f(c-a)=2 f(a+b+c) .
$$
16. Find all polynomials p with real coefficients that if for a real $a, p(a)$ is integer then a is integer.
17. \mathfrak{P} is a real polynomail such that if α is irrational then $\mathfrak{P}(\alpha)$ is irrational. Prove that $\operatorname{deg}[\mathfrak{P}] \leq 1$
18. Show that the odd number n is a prime number if and only if the polynomial $T_{n}(x) / x$ is irreducible over the integers.
19. P, Q, R are non-zero polynomials that for each $z \in \mathbb{C}, P(z) Q(\bar{z})=R(z)$. a) If $P, Q, R \in \mathbb{R}[x]$, prove that Q is constant polynomial. b) Is the above statement correct for $P, Q, R \in \mathbb{C}[x]$?
20. Let P be a polynomial such that $P(x)$ is rational if and only if x is rational. Prove that $P(x)=a x+b$ for some rational a and b.
21. Prove that any polynomial $\in \mathbb{R}[X]$ can be written as a difference of two strictly increasing polynomials.
22. Consider the polynomial $W(x)=(x-a)^{k} Q(x)$, where $a \neq 0, Q$ is a nonzero polynomial, and k a natural number. Prove that W has at least $k+1$ nonzero coefficients.
23. Find all polynomials $p(x) \in \mathbb{R}[x]$ such that the equation
$$
f(x)=n
$$
has at least one rational solution, for each positive integer n.
24. Let $f \in \mathbb{Z}[X]$ be an irreducible polynomial over the ring of integer polynomials, such that $|f(0)|$ is not a perfect square. Prove that if the leading coefficient of f is 1 (the coefficient of the term having the highest degree in f) then $f\left(X^{2}\right)$ is also irreducible in the ring of integer polynomials.
25. Let p be a prime number and f an integer polynomial of degree d such that $f(0)=0, f(1)=1$ and $f(n)$ is congruent to 0 or 1 modulo p for every integer n. Prove that $d \geq p-1$.
26. Let $P(x):=x^{n}+\sum_{k=1}^{n} a_{k} x^{n-k}$ with $0 \leq a_{n} \leq a_{n-1} \leq \ldots a_{2} \leq a_{1} \leq 1$. Suppose that there exists $r \geq 1, \varphi \in \mathbb{R}$ such that $P\left(r e^{i \varphi}\right)=0$. Find r.
27. Let \mathcal{P} be a polynomail with rational coefficients such that
$$
\mathcal{P}^{-1}(\mathbb{Q}) \subseteq \mathbb{Q} .
$$

Prove that $\operatorname{deg} \mathcal{P} \leq 1$.
28. Let f be a polynomial with integer coefficients such that $|f(x)|<1$ on an interval of length at least 4. Prove that $f=0$.
29. prove that $x^{n}-x-1$ is irreducible over \mathbb{Q} for all $n \geq 2$.
30. Find all real polynomials $p(x)$ such that

$$
p^{2}(x)+2 p(x) p\left(\frac{1}{x}\right)+p^{2}\left(\frac{1}{x}\right)=p\left(x^{2}\right) p\left(\frac{1}{x^{2}}\right)
$$

For all non-zero real x.
31. Find all polynomials $P(x)$ with odd degree such that

$$
P\left(x^{2}-2\right)=P^{2}(x)-2 .
$$

32. Find all real polynomials that

$$
p(x+p(x))=p(x)+p(p(x))
$$

33. Find all polynomials $P \in \mathbb{C}[X]$ such that

$$
P\left(X^{2}\right)=P(X)^{2}+2 P(X)
$$

34. Find all polynomials of two variables $P(x, y)$ which satisfy

$$
P(a, b) P(c, d)=P(a c+b d, a d+b c), \forall a, b, c, d \in \mathbb{R} .
$$

35. Find all real polynomials $f(x)$ satisfying

$$
f\left(x^{2}\right)=f(x) f(x-1) \forall x \in \mathbb{R}
$$

36. Find all polynomials of degree 3 , such that for each $x, y \geq 0$:

$$
p(x+y) \geq p(x)+p(y)
$$

37. Find all polynomials $P(x) \in \mathbb{Z}[x]$ such that for any $n \in \mathbb{N}$, the equation $P(x)=2^{n}$ has an integer root.
38. Let f and g be polynomials such that $f(Q)=g(Q)$ for all rationals Q. Prove that there exist reals a and b such that $f(X)=g(a X+b)$, for all real numbers X.
39. Find all positive integers $n \geq 3$ such that there exists an arithmetic progression $a_{0}, a_{1}, \ldots, a_{n}$ such that the equation $a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=0$ has n roots setting an arithmetic progression.
40. Given non-constant linear functions $p_{1}(x), p_{2}(x), \ldots p_{n}(x)$. Prove that at least $n-2$ of polynomials $p_{1} p_{2} \ldots p_{n-1}+p_{n}, p_{1} p_{2} \ldots p_{n-2} p_{n}+p_{n-1}, \ldots p_{2} p_{3} \ldots p_{n}+$ p_{1} have a real root.
41. Find all positive real numbers $a_{1}, a_{2}, \ldots, a_{k}$ such that the number $a_{1}^{\frac{1}{n}}+$ $\cdots+a_{k}^{\frac{1}{n}}$ is rational for all positive integers n, where k is a fixed positive integer.
42. Let f, g be real non-constant polynomials such that $f(\mathbb{Z})=g(\mathbb{Z})$. Show that there exists an integer A such that $f(X)=g(A+x)$ or $f(x)=g(A-x)$.
43. Does there exist a polynomial $f \in \mathbb{Q}[x]$ with rational coefficients such that $f(1) \neq-1$, and $x^{n} f(x)+1$ is a reducible polynomial for every $n \in \mathbb{N}$?
44. Suppose that f is a polynomial of exact degree p. Find a rigurous proof that $S(n)$, where $S(n)=\sum_{k=0}^{n} f(k)$, is a polynomial function of (exact) degree $p+1$ in varable n.
45. The polynomials P, Q are such that $\operatorname{deg} P=n, \operatorname{deg} Q=m$, have the same leading coefficient, and $P^{2}(x)=\left(x^{2}-1\right) Q^{2}(x)+1$. Prove that $P^{\prime}(x)=n Q(x)$
46. Given distinct prime numbers p and q and a natural number $n \geq 3$, find all $a \in \mathbb{Z}$ such that the polynomial $f(x)=x^{n}+a x^{n-1}+p q$ can be factored into 2 integral polynomials of degree at least 1 .
47. Let F be the set of all polynomials Γ such that all the coefficients of $\Gamma(x)$ are integers and $\Gamma(x)=1$ has integer roots. Given a positive intger k, find the smallest integer $m(k)>1$ such that there exist $\Gamma \in F$ for which $\Gamma(x)=m(k)$ has exactly k distinct integer roots.
48. Find all polynomials $P(x)$ with integer coefficients such that the polynomial

$$
Q(x)=\left(x^{2}+6 x+10\right) \cdot P^{2}(x)-1
$$

is the square of a polynomial with integer coefficients.
49. Find all polynomials p with real coefficients such that for all reals a, b, c such that $a b+b c+c a=1$ we have the relation

$$
p(a)^{2}+p(b)^{2}+p(c)^{2}=p(a+b+c)^{2} .
$$

50. Find all real polynomials f with $x, y \in \mathbb{R}$ such that

$$
2 y f(x+y)+(x-y)(f(x)+f(y)) \geq 0 .
$$

51. Find all polynomials such that $P\left(x^{3}+1\right)=P\left((x+1)^{3}\right)$.
52. Find all polynomials $P(x) \in \mathbb{R}[x]$ such that $P\left(x^{2}+1\right)=P(x)^{2}+1$ holds for all $x \in \mathbb{R}$.
53. Problem: Find all polynomials $p(x)$ with real coefficients such that

$$
(x+1) p(x-1)+(x-1) p(x+1)=2 x p(x)
$$

for all real x.
54. Find all polynomials $P(x)$ that have only real roots, such that

$$
P\left(x^{2}-1\right)=P(x) P(-x) .
$$

55. Find all polynomials $P(x) \in \mathbb{R}[x]$ such that:

$$
P\left(x^{2}\right)+x \cdot(3 P(x)+P(-x))=(P(x))^{2}+2 x^{2} \quad \forall x \in \mathbb{R}
$$

56. Find all polynomials f, g which are both monic and have the same degree and

$$
f(x)^{2}-f\left(x^{2}\right)=g(x)
$$

57. Find all polynomials $P(x)$ with real coefficients such that there exists a polynomial $Q(x)$ with real coefficients that satisfy

$$
P\left(x^{2}\right)=Q(P(x))
$$

58. Find all polynomials $p(x, y) \in \mathbb{R}[x, y]$ such that for each $x, y \in \mathbb{R}$ we have

$$
p(x+y, x-y)=2 p(x, y) .
$$

59. Find all couples of polynomials (P, Q) with real coefficients, such that for infinitely many $x \in \mathbb{R}$ the condition

$$
\frac{P(x)}{Q(x)}-\frac{P(x+1)}{Q(x+1)}=\frac{1}{x(x+2)}
$$

Holds.
60. Find all polynomials $P(x)$ with real coefficients, such that $P(P(x))=P(x)^{k}$ (k is a given positive integer)
61. Find all polynomials

$$
P_{n}(x)=n!x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+(-1)^{n}(n+1) n
$$

with integers coefficients and with n real roots $x_{1}, x_{2}, \ldots, x_{n}$, such that $k \leq x_{k} \leq$ $k+1$, for $k=1,2 \ldots, n$.
62. The function $f(n)$ satisfies $f(0)=0$ and $f(n)=n-f(f(n-1)), n=$ $1,2,3 \cdots$. Find all polynomials $g(x)$ with real coefficient such that

$$
f(n)=[g(n)], \quad n=0,1,2 \cdots
$$

Where $[g(n)]$ denote the greatest integer that does not exceed $g(n)$.
63. Find all pairs of integers a, b for which there exists a polynomial $P(x) \in$ $\mathbb{Z}[X]$ such that product $\left(x^{2}+a x+b\right) \cdot P(x)$ is a polynomial of a form

$$
x^{n}+c_{n-1} x^{n-1}+\ldots+c_{1} x+c_{0}
$$

where each of $c_{0}, c_{1}, \ldots, c_{n-1}$ is equal to 1 or -1 .
64. There exists a polynomial P of degree 5 with the following property: if z is a complex number such that $z^{5}+2004 z=1$, then $P\left(z^{2}\right)=0$. Find all such polynomials P
65. Find all polynomials $P(x)$ with real coefficients satisfying the equation

$$
(x+1)^{3} P(x-1)-(x-1)^{3} P(x+1)=4\left(x^{2}-1\right) P(x)
$$

for all real numbers x.
66. Find all polynomials $P(x, y)$ with real coefficients such that:

$$
P(x, y)=P(x+1, y)=P(x, y+1)=P(x+1, y+1)
$$

67. Find all polynomials $P(x)$ with reals coefficients such that

$$
(x-8) P(2 x)=8(x-1) P(x)
$$

68. Find all reals α for which there is a nonzero polynomial P with real coefficients such that

$$
\frac{P(1)+P(3)+P(5)+\cdots+P(2 n-1)}{n}=\alpha P(n) \quad \forall n \in \mathbb{N},
$$

and find all such polynomials for $\alpha=2$.
69. Find all polynomials $P(x) \in \mathbb{R}[X]$ satisfying

$$
(P(x))^{2}-(P(y))^{2}=P(x+y) \cdot P(x-y), \quad \forall x, y \in \mathbb{R}
$$

70. Find all $n \in \mathbb{N}$ such that polynomial

$$
P(x)=(x-1)(x-2) \cdots(x-n)
$$

can be represented as $Q(R(x))$, for some polynomials $Q(x), R(x)$ with degree greater than 1.
71. Find all polynomials $P(x) \in R[x]$ such that $P\left(x^{2}-2 x\right)=(P(x)-2)^{2}$.
72. Find all non-constant real polynomials $f(x)$ such that for any real x the following equality holds

$$
f(\sin x+\cos x)=f(\sin x)+f(\cos x) .
$$

73. Find all polynomials $W(x) \in \mathbb{R}[x]$ such that

$$
W\left(x^{2}\right) W\left(x^{3}\right)=W(x)^{5} \quad \forall x \in \mathbb{R}
$$

74. Find all the polynomials $f(x)$ with integer coefficients such that $f(p)$ is prime for every prime p.
75. Let $n \geq 2$ be a positive integer. Find all polynomials $P(x)=a_{0}+a_{1} x+$ $\cdots+a_{n} x^{n}$ having exactly n roots not greater than -1 and satisfying

$$
a_{0}^{2}+a_{1} a_{n}=a_{n}^{2}+a_{0} a_{n-1} .
$$

76. Find all polynomials $P(x), Q(x)$ such that

$$
P(Q(X))=Q(P(x)) \forall x \in \mathbb{R} .
$$

77. Find all integers k such that for infinitely many integers $n \geq 3$ the polynomial

$$
P(x)=x^{n+1}+k x^{n}-870 x^{2}+1945 x+1995
$$

can be reduced into two polynomials with integer coefficients.
78. Find all polynomials $P(x), Q(x), R(x)$ with real coefficients such that

$$
\sqrt{P(x)}-\sqrt{Q(x)}=R(x) \quad \forall x \in \mathbb{R} .
$$

79. Let $k=\sqrt[3]{3}$. Find a polynomial $p(x)$ with rational coefficients and degree as small as possible such that $p\left(k+k^{2}\right)=3+k$. Does there exist a polynomial $q(x)$ with integer coefficients such that $q\left(k+k^{2}\right)=3+k$?
80. Find all values of the positive integer m such that there exists polynomials $P(x), Q(x), R(x, y)$ with real coefficient satisfying the condition: For every real numbers a, b which satisfying $a^{m}-b^{2}=0$, we always have that $P(R(a, b))=a$ and $Q(R(a, b))=b$.
81. Find all polynomials $p(x) \in \mathbb{R}[x]$ such that $p\left(x^{2008}+y^{2008}\right)=(p(x))^{2008}+$ $(p(y))^{2008}$, for all real numbers x, y.
82. Find all Polynomials $P(x)$ satisfying $P(x)^{2}-P\left(x^{2}\right)=2 x^{4}$.
83. Find all polynomials p of one variable with integer coefficients such that if a and b are natural numbers such that $a+b$ is a perfect square, then $p(a)+p(b)$ is also a perfect square.
84. Find all polynomials $P(x) \in \mathbb{Q}[x]$ such that

$$
P(x)=P\left(\frac{-x+\sqrt{3-3 x^{2}}}{2}\right) \quad \text { for all } \quad|x| \leq 1
$$

85. Find all polynomials f with real coefficients such that for all reals a, b, c such that $a b+b c+c a=0$ we have the following relations

$$
f(a-b)+f(b-c)+f(c-a)=2 f(a+b+c) .
$$

86. Find All Polynomials $P(x, y)$ such that for all reals x, y we have

$$
P\left(x^{2}, y^{2}\right)=P\left(\frac{(x+y)^{2}}{2}, \frac{(x-y)^{2}}{2}\right) .
$$

87. Let n and k be two positive integers. Determine all monic polynomials $f \in \mathbb{Z}[X]$, of degree n, having the property that $f(n)$ divides $f\left(2^{k} \cdot a\right)$, forall $a \in \mathbb{Z}$, with $f(a) \neq 0$.
88. Find all polynomials $P(x)$ such that

$$
P\left(x^{2}-y^{2}\right)=P(x+y) P(x-y) .
$$

89. Let $f(x)=x^{4}-x^{3}+8 a x^{2}-a x+a^{2}$. Find all real number a such that $f(x)=0$ has four different positive solutions.
90. Find all polynomial $P \in \mathbb{R}[x]$ such that: $P\left(x^{2}+2 x+1\right)=(P(x))^{2}+1$.
91. Let $n \geq 3$ be a natural number. Find all nonconstant polynomials with real coefficients $f_{1}(x), f_{2}(x), \ldots, f_{n}(x)$, for which

$$
f_{k}(x) f_{k+1}(x)=f_{k+1}\left(f_{k+2}(x)\right), \quad 1 \leq k \leq n
$$

for every real x (with $f_{n+1}(x) \equiv f_{1}(x)$ and $f_{n+2}(x) \equiv f_{2}(x)$).
92. Find all integers n such that the polynomial $p(x)=x^{5}-n x-n-2$ can be written as product of two non-constant polynomials with integral coefficients.
93. Find all polynomials $p(x)$ that satisfy

$$
(p(x))^{2}-2=2 p\left(2 x^{2}-1\right) \quad \forall x \in \mathbb{R} .
$$

94. Find all polynomials $p(x)$ that satisfy

$$
(p(x))^{2}-1=4 p\left(x^{2}-4 X+1\right) \quad \forall x \in \mathbb{R} .
$$

95. Determine the polynomials P of two variables so that:
a.) for any real numbers t, x, y we have $P(t x, t y)=t^{n} P(x, y)$ where n is a positive integer, the same for all t, x, y;
b.) for any real numbers a, b, c we have $P(a+b, c)+P(b+c, a)+P(c+a, b)=$ 0;
c.) $P(1,0)=1$.
96. Find all polynomials $P(x)$ satisfying the equation

$$
(x+1) P(x)=(x-2010) P(x+1) .
$$

97. Find all polynomials of degree 3 such that for all non-negative reals x and y we have

$$
p(x+y) \leq p(x)+p(y)
$$

98. Find all polynomials $p(x)$ with real coefficients such that $p(a+b-2 c)+p(b+c-2 a)+p(c+a-2 b)=3 p(a-b)+3 p(b-c)+3 p(c-a)$ for all $a, b, c \in \mathbb{R}$.
99. Find all polynomials $P(x)$ with real coefficients such that

$$
P\left(x^{2}-2 x\right)=(P(x-2))^{2}
$$

100. Find all two-variable polynomials $p(x, y)$ such that for each $a, b, c \in \mathbb{R}$:

$$
p\left(a b, c^{2}+1\right)+p\left(b c, a^{2}+1\right)+p\left(c a, b^{2}+1\right)=0
$$

Solutions

1. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=382979.
2. http://www. artofproblemsolving.com/Forum/viewtopic.php?t=385331.
3. http://www.artof problemsolving.com/Forum/viewtopic.php?t=337211.
4. http://www.artof problemsolving.com/Forum/viewtopic.php?t=395325.
5. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=396236.
6. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=392444.
7. http://www.artof problemsolving.com/Forum/viewtopic.php?t=392115.
8. http://www.artof problemsolving.com/Forum/viewtopic.php?t=391333.
9. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=381485.
10. http://www.artof problemsolving.com/Forum/viewtopic.php?t=22091.
11. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=21897.
12. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=19734.
13. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=16684.
14. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=18474.
15. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=14021.
16. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=6122.
17. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=78454.
18. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=35047.
19. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=111404.
20. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=85409.
21. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=66713.
22. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=54236.
23. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=53450.
24. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=53271.
25. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=49788.
26. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=49530.
27. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=47243.
28. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=48110.
29. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=68010.
30. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=131296.
31. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=397716.
32. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=111400.
33. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=136814.
34. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=145370.
35. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=151076.
36. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=151408.
37. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=26076.
38. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=1890.
39. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=24565.
40. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=20664.
41. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=18799.
42. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=16783.
43. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=28770.
44. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=35998.
45. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=37142.
46. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=37593.
47. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=38449.
48. http://www.artof problemsolving.com/Forum/viewtopic.php?t=42409.
49. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=46754.
50. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=249173.
51. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=57623.
52. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=39570.
53. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=24199.
54. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=75952.
55. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=77031.
56. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=82472.
57. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=83258.
58. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=84486.
59. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=89767.
60. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=91070.
61. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=91220.
62. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=97498.
63. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=82906.
64. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=100806.
65. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=107523.
66. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=112983.
67. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=175482.
68. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=175946.
69. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=180123.
70. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=183353.
71. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=184735.
72. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=185522.
73. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=188335.
74. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=190324.
75. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=195386.
76. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=216393.
77. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=217162.
78. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=223538.
79. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=138975.
80. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=224615.
81. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=227892.
82. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=245977.
83. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=206652.
84. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=397760.
85. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=14021.
86. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=277105.
87. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=278012.
88. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=277424.
89. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=282819.
90. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=282534.
91. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=283701.
92. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=285719.
93. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=316463.
94. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=316463.
95. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=61046.
96. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=335804.
97. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=341605.
98. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=347702.
99. http://www.artofproblemsolving.com/Forum/viewtopic.php?t=350921.
100. http://www.artof problemsolving.com/Forum/viewtopic.php?t=352087.

[^0]: *email: ahpwsog@gmail.com, blog: http://math-olympiad.blogsky.com

