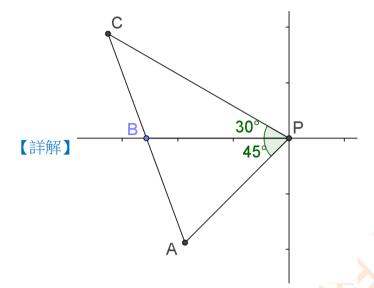
		1		
1	設 $x = \sqrt[3]{4} + \sqrt[3]{2}$,則 $\log_{16}(x^3 - 6x + 2) = ?$	104	1	
	V 1 V2 //3 / 810 // .	鳳		
	【解答】 $\frac{3}{4}$	Ш Ш		A 0
		高中		0
	【詳解】 $\Rightarrow a = \sqrt[3]{4}, b = \sqrt[3]{2}$,則 $x^3 = (a+b)^3 = 4+3\times2\times(\sqrt[3]{4}+\sqrt[3]{2})+2$,可知 $x^3 = 6+6x$	十		8
	$3\log 2$			6
	所以 $\log_{16}(x^3 - 6x + 2) = \log_{16}8 = \frac{3\log 2}{4\log 2} = \frac{3}{4}$			
1	坐標平面上,不等式 $ x + y + x+y \le 2$ 所圍成之區域面積為?	104	2	
		鳳		
	【解答】3	中		
	【詳解】考慮四個象限與 $x+y=0$ 。	高中		
		·		
	若 $x \ge 0, y < 0, x + y < 0 $,可得圖形 $x + (-y) - (x + y) \le 2 \Rightarrow y \ge -1 $ 。			A 0
				0
				8
	x + y = 0			7
	因此面積為3。			
	2 -1			
	Y, 7/\)			

設 $\mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C}$ 依序為一筆直公路上之相異三點, $\overline{AB} = \overline{BC} = 1$ 公里,從此三點觀測塔 \mathbf{P} ,在 \mathbf{A} 處測得塔在其東北方向,在 \mathbf{B} 處測得塔在其正東方向,在 \mathbf{C} 處測得塔在其南偏東 60° 方向,則塔 \mathbf{P} 與此筆直公路之最短距離為幾公里 ?

鳳山高中

【解答】 $\frac{7+5\sqrt{3}}{13}$



由於 $\overline{AB} = \overline{BC} = 1$,可知面積 $\triangle ABP = \triangle BCP$, $\frac{1}{2}\overline{PA} \cdot \overline{PB} \cdot \sin 45^{\circ} = \frac{1}{2}\overline{PC} \cdot \overline{PB} \cdot \sin 30^{\circ}$

可得 $\overline{PC} = \sqrt{2}\overline{PA}$ °

令 $\overline{PA} = x$,代餘弦定理 $\cos 75^{\circ} = \frac{\sqrt{6} - \sqrt{2}}{4} = \frac{x^2 + (\sqrt{2}x)^2 - 2^2}{2 \cdot x \cdot \sqrt{2}x}$,可解得 $x^2 = \frac{16 + 4\sqrt{3}}{13}$ 。

設最短距離為h,可視為 ΔPAC 中 \overline{AC} 上的高,因此 ΔPAC 面積

$$\Delta = \frac{1}{2}\sqrt{2}x^2 \cdot \sin 75^\circ = \frac{1}{2} \cdot 2 \cdot h$$
 , 可解得 $h = \frac{7 + 5\sqrt{3}}{13}$

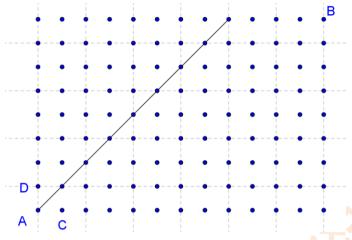
1	設 n 為正整數, $[x]$ 表不大於 x 之最大整數, $[\sqrt[3]] + [\sqrt[3]] + [\sqrt[3]] + + [\sqrt[3]] = 3n$,則 n=? 【解答】96 【詳解】n 個數字相加和為 3n,平均每個數為 3,所以想法是將 $[\sqrt[3]k] = 4$ 多的 1 補 去 $[\sqrt[3]k] = 2$ 與 $[\sqrt[3]k] = 1$ 。 易知使得 $[\sqrt[3]k] = 1$ 的 k 值有 7 個, $[\sqrt[3]k] = 2$ 的 k 值有 26-7=19 個,相當於要用 $[\sqrt[3]k] = 4$ 補上 26+7=33,需要 33 個能使 $[\sqrt[3]k] = 4$ 的 k 值,最小的 k 為 64,所以 $n = 64 + 33 - 1 = 96$ 。	104 鳳 山 高 中	4	A 0 0 8 9
1	曲線 $y^2 = 4 - 2x$ 與直線 $2x + y = 2$ 所圍成之區域面積為 ? 【解答】 $\frac{9}{4}$ 【詳解】改寫為 $x = \frac{4 - y^2}{2}$ 與 $x = \frac{2 - y}{2}$,解 $4 - y^2 = 2 - y$,得 $y = 2, -1$,交點的 y 值 為 $2, -1$ 。 因此區域面積為 $\int_{-1}^2 \frac{4 - y^2}{2} - \frac{2 - y}{2} dy = \frac{9}{4}$ 。	104 鳳 山 高 中	5	A 0 0 9 0
1	已知有 95 個數字 a_1, a_2, \dots, a_{95} ,每個數字只能取值 $+1$ 或 -1 其中一個,則這些數字兩兩乘積之和的最小正值為? 【解答】13 【詳解】設有 k 個 1 ,95 $-k$ 個 -1 ,則兩兩乘積之和 $\sum_{i < j} a_i a_j = \frac{(\sum_{i = 1}^{95} a_i) \times (\sum_{i = 1}^{95} a_i) - \sum_{i = j} a_i a_j}{2} = \frac{(2k - 95)^2 - 95}{2} \text{,解}(2k - 95)^2 \ge 95 \text{的最小正整數}$ k ,可知 $(2k - 95)^2 \ge 10^2$,可得 $k \ge 52.5 \text{ or } k \le 42.5$,取 $k = 53 \text{ or } 42$ 時有最小值,此最小值為 $\frac{(2 \times 53 - 95)^2 - 95}{2} = 13$ 。	104 鳳 山 高 中	6	A 0 0 9 1

袋中有 12 個白球,8 個紅球,每次隨機取出一球,取出後不放回,直到所有球取完 為止,在取球的過程中,發生取出白球與紅球個數相等的事件為 A ,則 P(A)=?

104 鳳 山 高 中

【解答】 $\frac{4}{5}$

【詳解】P(A)=1-P(白恆多於紅),其中白球恆多於紅球的機率,可視為由 A 點向右 12 步,向上 8 部,走到 B 點的方法數中,不經過斜線上的點 P_i 的機率。



由圖中可知 $P(A \rightarrow D \rightarrow B) + P(A \rightarrow C \rightarrow B) = 1$,其中

$$P(A \to D \to B) = \frac{\frac{19!}{7!12!}}{\frac{20!}{8!12!}} = \frac{8}{20} = \frac{2}{5}$$
,加上由於 $C \cdot D$ 兩點對稱,可知

$$P(A \to D \to B) = P(A \to D \to P_i \to B) = P(A \to C \to P_i \to B) = \frac{2}{5}$$
,因此白球恆多於紅

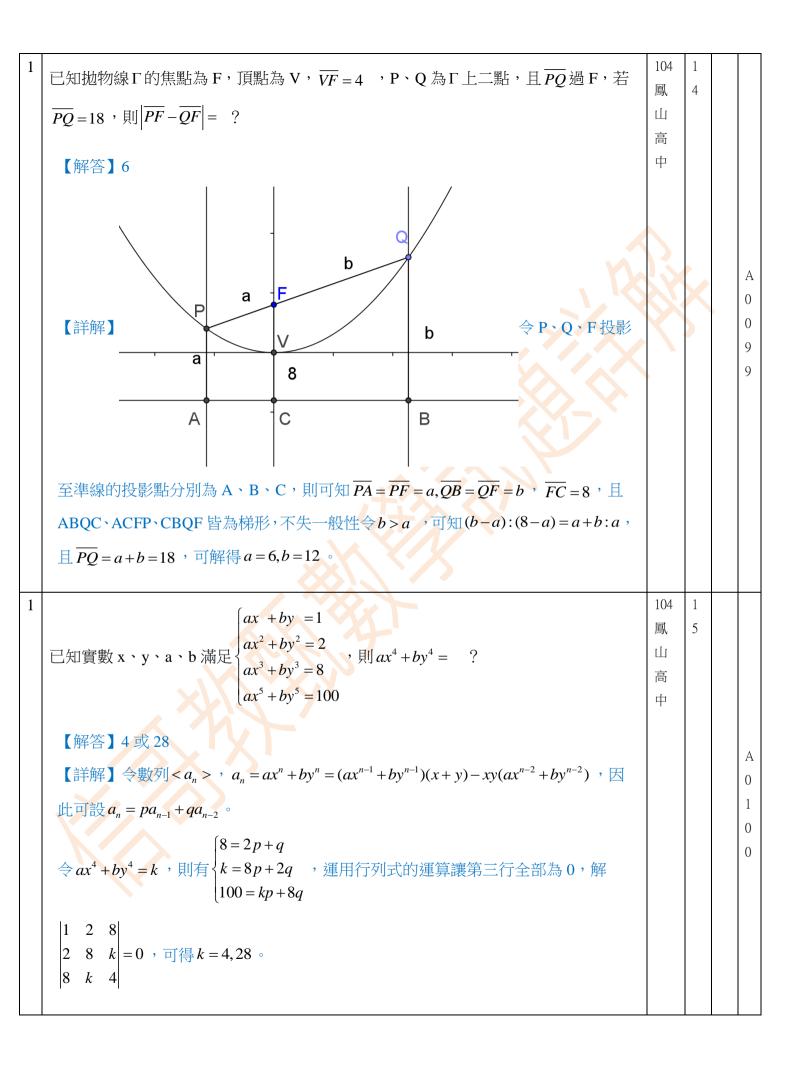
球的機率
$$1-P(A \to D \to B)-P(A \to C \to P_i \to B) = 1-2 \times \frac{2}{5} = \frac{1}{5}$$
,所求為 $1-\frac{1}{5} = \frac{4}{5}$ 。

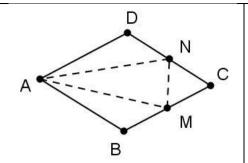
A 0 0

1	在 Δ <i>ABC</i> 中, ∠ <i>C</i> = 90°, D、 E 兩點在邊 \overline{AB} 上且 $\overline{AD} = \overline{DE} = \overline{EB}$, 若 ∠ <i>ACD</i> = α , ∠ <i>DCE</i> = β , ∠ <i>ECB</i> = γ ,則 $\frac{\sin \alpha \cdot \sin \gamma}{\sin \beta}$ = ?	104 鳳 山	8		
	「解答」 $\frac{1}{3}$	高中			
	【詳解】 設 ΔABC 面積為 S,利用			•	A 0 0 9 3
	$\Delta ADC = \Delta DCE = \Delta ECB = \frac{1}{3}S , 可知 \frac{\Delta ADC \times \Delta ECB}{\Delta DCE} = \frac{1}{3}S $				
1		104	9		
	設 $P(x,y)$ 為雙曲線 $9x^2 - 16y^2 = 144$ 上一點,且 P 點在第一象限內,則 $\lim_{x \to \infty} \sqrt{x 3x - 4y } = ?$	瓜山高			
	【解答】 $2\sqrt{6}$ 【詳解】 $9x^2 - 16y^2 = 144$ 即 $(3x - 4y)(3x + 4y) = 144$	中			A 0 0
	因 P 在第一象限,因此 $3x-4y=\frac{144}{3x+4y}>0$,又 $16y^2=9x^2+144$,可得 $4y=\sqrt{9x^2+144}$ 代入所求				9
	$\lim_{x \to \infty} \sqrt{x 3x - 4y } = \lim_{x \to \infty} \sqrt{x \cdot \frac{144}{3x + 4y}} = \lim_{x \to \infty} \sqrt{\frac{144x}{3x + \sqrt{9x^2 + 144}}} = \lim_{x \to \infty} \sqrt{\frac{144x}{3x + 3x}} = \sqrt{24} \circ$				

日 已知直線 $y = 2x + k$ 與 $y = x^3 - x + 1$ 的圖形交於相異三點,至少有一交點的 x 座標大於 $\frac{3}{2}$,則實數 k 之範圍為?	104 鳳 山	1 0	
【解答】 $-\frac{1}{8} < k < 3$	高中		A
【詳解】			0 0 9
利用三次方程式判別式 $\frac{q^2}{4} + \frac{p^3}{27} < 0$,可知 $\frac{(1-k)^2}{4} - 1 < 0$, $-1 < k < 3$ 。			5
又 $f(\frac{3}{2}) = -\frac{1}{8} - k < 0$,可知 $-\frac{1}{8} < k$ 。所以 $-\frac{1}{8} < k < 3$ 。			
1 設 a 為實數,已知滿足方程式 $ x-1 -2 +a =x^2-2x+2$ 的相異實數 x 共有 3 個,則	104	1 1	
a=? 【解答】-3	高中		
f(x) = x - 1 $h(x) = x - 1 - 2 $			
			A 0 0
(1, 1)			6
p(x) = x - 1 - 2 - 3			
如圖,由於絕對值圖形對稱於 $x=1$,拋物線 x^2-2x+2 也是對稱於 $x=1$,因此焦點數目一般而言會是偶數個,除非剛好交於頂點。			
所以令 $x=1$ 代入 $ x-1 -2 +a =x^2-2x+2$,可解出 $a=-3$ 。			

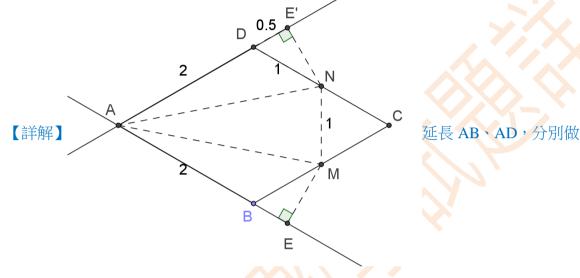
1	使得 $20n^2 + 9n + 1$ 為完全平方數(即某個整數的平方)的最小正整數 $n=?$	104	1	
	以付 $2000+900+1$ 网儿主十万致(四末旧主致印 $+700$)取小工主致 $11-1$	鳳	2	
	【解答】72	Ш		
	【詳解】 $20n^2 + 9n + 1 \equiv n + 1 \pmod{4}$	高		Α
	計解 $20n + 9n + 1 = n + 1 \pmod{4}$	中		0
	因完全平方數 = 0 or 1 (mod 4),所以 $n = 0$ or 3 (mod 4)			0
	$20n^2 + 9n + 1 = (4n+1)(5n+1)$,將 $n = 3, 4, 7, 8,$ 代入,可得當 $n=72$,			9
	$20^2 + 0 + 1 - 220 261 - (1710)^2$			7
	$20n^2 + 9n + 1 = 289 \times 361 = (17 \times 19)^2$			
	【備註】真的沒有快一點的方法嗎?			





104 鳳 山 高 中

【解答】 $\frac{1}{3}$



 $\overline{ME} \perp \overline{AB}$ 於 E , $\overline{NE'} \perp \overline{AD}$ 於 E' , 則往上折會將 E, E' 重疊,所求 θ 即為 $\angle MEN$ 。 利用 $\angle B = 120^\circ$, 設菱形邊長為 2 , 可知 $\overline{ME} = \overline{NE'} = \frac{\sqrt{3}}{2}$, $\overline{MN} = 1$, 所以

$$\cos \theta = \frac{(\frac{\sqrt{3}}{2})^2 + (\frac{\sqrt{3}}{2})^2 - 1^2}{2 \cdot \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2}} = \frac{1}{3}$$

0 1 0