Math Pro 數學補給站's Archiver

大膽假設,小心求證。

weiye 發表於 2020-9-16 09:22

等腰直角三角形內接正方形求面積

(朋友問的105北區第二次學測模擬考的題目,解完放上來分享一下。)

[attach]5637[/attach]

解答:

令 D(0,0), C(2,0), A(0,2), G(a,b),則

E(-b,a) → F(a-b, a+b)

因為 F(a-b, a+b) 位在直線AC: x+y=2 上,

所以 (a-b)+(a+b)=2,得 a=1,

→ G(1,b)、E(-b,1)

因為 GC : BE = 1:√3,

所以 BE^2 = 3 GC^2

→ (b-2)^2 + 1^2 = 3(1^2 + b^2)

→ b^2 + 2b -1 =0

→ (b+1)^2 = 2

→ b = -1 +√2

所求正方形面積 = 1^2 + b^2 = 4-2√2

頁: [1]

論壇程式使用 Discuz! Archiver 6.1.0  © 2001-2007 Comsenz Inc.