一半徑為1的球面上有甲乙丙三點,甲坐標為\( (1,0,0) \),乙坐標為\( \displaystyle (\frac{1}{2},\frac{1}{2},\frac{\sqrt{2}}{2}) \),已知丙在甲乙最短距離的一半處,求丙坐標?
[解答]
設丙\( (a,b,c) \),且\( a^2+b^2+c^2=1 \),甲乙中點為\( \displaystyle (\frac{3}{4},\frac{1}{4},\frac{\sqrt{2}}{4}) \),再來我就卡住了
110.8.15補充
今一單位球(半徑為1的球)球心為原點,且球面上兩點\(P\)、\(Q\)座標分別為\(\displaystyle P(1,0,0),Q(-\frac{1}{2},\frac{3}{4},\frac{\sqrt{3}}{4})\),沿著球面行進,於\(PQ\)最短路徑中取一點\(R\),使得弧\(PR\):弧\(QR=1:3\),試求\(R\)點座標。
(1092中山大學雙週一題第6題,
http://www.math.nsysu.edu.tw/~problem/2021s/1092Q&A.htm)