發新話題
打印

113大直高中

本主題由 bugmens 於 2024-4-24 13:59 合併
1.
已知\(a,b,c\)為相異之正整數,且滿足\(abc=2310\),則集合\(\{\;a,b,c \}\;\)共有   種可能。
(1995AHSME,連結有答案https://artofproblemsolving.com/ ... Problems/Problem_29)
(相關問題,https://math.pro/db/viewthread.php?tid=1334&page=1#pid5243)

2.
若有一正數數列\(\langle\;a_n\rangle\;\)滿足\(a_1=1\),其中\(S_n=a_1+a_2+\ldots+a_n\),且\(\sqrt{S_n}+\sqrt{S_{n-1}}=a_n(n\ge 2)\),求\(S_{20}-S_{19}+S_{18}=\)   
我的教甄準備之路 求數列一般項https://math.pro/db/viewthread.php?tid=661&page=3#pid9507
[解答]
\(\sqrt{S_n}+\sqrt{S_{n-1}}=a_n=S_n-S_{n-1}=(\sqrt{S_n}+\sqrt{S_{n-1}})(\sqrt{S_n}-\sqrt{S_{n-1}})\),得\(\sqrt{S_n}-\sqrt{S_{n-1}}=1\)

\(\matrix{\sqrt{S_n}-\sqrt{S_{n-1}}=1 \cr \sqrt{S_{n-1}}-\sqrt{S_{n-2}}=1 \cr \ldots \cr \sqrt{S_2}-\sqrt{S_1}=1 \cr_______\cr \sqrt{S_n}-\sqrt{S_1}=n-1}\)

\(\sqrt{S_n}-\sqrt{a_1}=\sqrt{S_n}-1=n-1\)
得\(\sqrt{S_n}=n\),\(S_n=n^2\)

3.
若\(a_n=\left|\matrix{n&n+1&0 \cr n+2&n+1&n+2\cr n+2&0&n+2} \right|,\forall n \in N\),則\(\displaystyle \lim_{n\to \infty}\sum_{k=1}^n \frac{1}{a_k}=\)   
我的教甄準備之路 裂項相消,https://math.pro/db/viewthread.php?tid=661&page=2#pid1678
[提示]
\(a_n=\left|\matrix{n&n+1&0 \cr 0&n+1&0\cr n+2&0&n+2} \right|=
\left|\matrix{n&0&0 \cr 0&n+1&0\cr n+2&0&n+2} \right|=n(n+1)(n+2)\)
\(\displaystyle \frac{1}{a_n}=\frac{1}{n(n+1)(n+2)}=\frac{1}{2}\left(\frac{1}{n(n+1)}-\frac{1}{(n+1)(n+2)}\right)\)

8.
空間中有\(A(-1,3,2)\),\(B(3,3,4)\)兩點,過\(A\)、\(B\)兩點且球心在平面\(E\):\(5x-2y+5z-5=0\)上之球面有無限多個,則其中半徑最小之球面\(S\)的方程式為   

空間中有三點\(A(-1,1,3)\)、\(B(3,1,5)\)、\(P(4,-1,-4)\),若球面\(S\)過\(A\)、\(B\)兩點且球心在平面\(E\):\(5x-2y+5z-14=0\)上,則滿足此條件的球面\(S\)有無限多個,其中半徑最小的球面方程式為   
(100中科實中,連結有答案https://math.pro/db/viewthread.php?tid=1107&page=1#pid3156)

二、非選題
2.
在坐標空間中,\(xz\)平面上有一直線\(L\):\(\sqrt{3}x-z-6=0\),將此直線繞\(z\)軸旋轉得到一個直圓錐面,此圓錐面和\(xy\)平面圍成一個圓錐體。現將一球塞進此圓錐體中,則此球面半徑最大時的球心坐標為   
相關問題https://math.pro/db/thread-1268-1-1.html

3.
右圖為一個\(8\times 8\)的黑白色棋盤,現欲將此棋盤分割成\(n\)個矩形,規定不能破壞棋盤上的任何一格,並且須滿足下述二個條件:
(1)每一個矩形中白格與黑格的個數相等;
(2)若\(a_i\)為第\(i\)個矩形的面積,則\(a_1<a_2<\ldots<a_n\)
試問滿足上述分割的最大可能\(n\)值為何?並且畫出此\(n\)值的所有分割。
(建中通訊解題第59期,連結有答案https://www.sec.ntnu.edu.tw/uplo ... 45bce2/09-97050.pdf)

TOP

發新話題
最近訪問的版塊