35 1234
發新話題
打印

112新北市高中聯招

112新北市高中聯招

 

附件

112新北市高中聯招題目.pdf (239.98 KB)

2023-5-7 14:37, 下載次數: 5189

112新北市高中聯招答案.pdf (128.56 KB)

2023-5-7 14:37, 下載次數: 4956

TOP

一、填充題
6.
兩數列\(\langle\;a_n\rangle\;,\langle\;b_n\rangle\;\),滿足\(a_1=2\),\(b_1=1\),且\(a_{n+1}=5a_n+3b_n+7\),\(b_{n+1}=3a_n+5b_n\),\(n\in N\),試求\(a_n\)的一般式。

thepiano所提到同類型的題目要一起準備,你有準備嗎?
https://math.pro/db/viewthread.php?tid=680&page=3#pid7959

9.
\(ABCD\)為平行四邊形且點\(E,F\)分別落在\(AB,BC\)邊上。若\(\Delta AED\)的面積等於7、\(\Delta EBF\)的面積等於3、\(\Delta  CDF\)的面積等於6。則\(\Delta DEF\)的面積為何?

E,F分別在矩形ABCD的邊\( \overline{BC} \),\( \overline{CD} \)上,若\( \Delta ABE \),\( \Delta ECF \),\( \Delta AFD \)的面積分別為3,1,2,則\( \Delta AEF \)的面積是  
(103桃園高中二招,https://math.pro/db/viewthread.php?tid=1949&page=1#pid11257)

10.
求極限\(\displaystyle \lim_{n\to \infty}\root n \of {\frac{(3n)!}{(n!)^3}}\)的值。
[解答]
先計算取\(ln\)的極限
\(\displaystyle \lim_{n\to \infty}ln \root n \of {\frac{(3n)!}{(n!)^3}}=\lim_{n\to \infty}\frac{1}{n}ln \left[ \frac{n!}{n!}\left(\frac{(n+1)(n+2)\ldots(n+n)}{1\cdot 2 \ldots n}\right)\left(\frac{(2n+1)(2n+2)\ldots(2n+n)}{1\cdot 2\ldots n}\right)\right]\)
\(\displaystyle =\lim_{n\to \infty}\frac{1}{n}ln \left(\frac{(n+1)(n+2)\ldots(n+n)}{1\cdot 2 \ldots n}\right)+\lim_{n\to \infty}\frac{1}{n}ln \left(\frac{(2n+1)(2n+2)\ldots(2n+n)}{1\cdot 2\ldots n}\right)\)
\(\displaystyle =\lim_{n\to \infty}\frac{1}{n}\sum_{k=1}^n ln \left(\frac{n+k}{k}\right)+\lim_{n\to \infty}\frac{1}{n}\sum_{k=1}^n ln \left(\frac{2n+k}{k}\right)\)
\(\displaystyle =\lim_{n\to \infty}\frac{1}{n}\sum_{k=1}^n ln \left(\frac{1+\frac{k}{n}}{\frac{k}{n}}\right)+\lim_{n\to \infty}\frac{1}{n}\sum_{k=1}^n ln \left(\frac{2+\frac{k}{n}}{\frac{k}{n}}\right)\)
\(\displaystyle =\int_0^1 ln\left(\frac{1+x}{x}\right)dx+\int_0^1 ln\left(\frac{2+x}{x}\right)dx\)
寫成瑕積分
\(\displaystyle =\lim_{a\to 0^{+}}\int_a^1 ln\left(\frac{1+x}{x}\right)dx+\lim_{a\to 0^{+}}\int_a^1 ln\left(\frac{2+x}{x}\right)dx\)
分部積分公式\(\int u dv=uv-\int v du\)
\(\displaystyle u=ln\left(\frac{1+x}{x}\right)\),\(\displaystyle du=\frac{x}{1+x}\cdot \frac{1(x)-(1+x)1}{x^2}=\frac{-1}{x(x+1)}\)
\(dv=1\),\(v=1+x\)
\(\displaystyle =\lim_{a\to 0^{+}}\left[ln\left(\frac{1+x}{x}\right)(1+x)\Bigg\vert\;_a^1-\int_a^1 (1+x)\cdot \frac{-1}{x(x+1)}dx \right]\)
\(\displaystyle =\lim_{a\to 0^{+}}\left[ln\left(\frac{1+x}{x}\right)(1+x)\Bigg\vert\;_a^1+\int_a^1 \frac{1}{x}dx \right]\)
\(\displaystyle =\lim_{a\to 0^{+}}\left[ln\left(\frac{1+x}{x}\right)(1+x)\Bigg\vert\;_a^1+ln(x)\Bigg\vert\;_a^1 \right]\)
\(\displaystyle =\lim_{a\to 0^{+}}\left[2ln2-ln\left(\frac{1+a}{a}\right)(1+a)+ln1-ln(a)\right]\)
\(\displaystyle =2ln2-\lim_{a\to 0^{+}}\left[(ln(1+a)-ln(a))(1+a)+ln(a)\right]\)
\(\displaystyle =2ln2-\lim_{a\to 0^{+}}\left[ln(1+a)+aln(1+a)-ln(a)-aln(a)+ln(a)\right]\)
\(\displaystyle =2ln2-0\)
\(\displaystyle =2ln2\)
\(\displaystyle u=ln\left(\frac{2+x}{x}\right)\),\(\displaystyle du=\frac{x}{2+x}\cdot \frac{1(x)-(2+x)1}{x^2}=\frac{-2}{x(x+2)}\)
\(dv=1\),\(v=2+x\)
\(\displaystyle =\lim_{a\to 0^{+}}\left[ln\left(\frac{2+x}{x}\right)(2+x)\Bigg\vert\;_a^1-\int_a^1 (2+x)\cdot \frac{-2}{x(x+2)}dx \right]\)
\(\displaystyle =\lim_{a\to 0^{+}}\left[ln\left(\frac{2+x}{x}\right)(2+x)\Bigg\vert\;_a^1+2\int_a^1 \frac{1}{x}dx \right]\)
\(\displaystyle =\lim_{a\to 0^{+}}\left[ln\left(\frac{2+x}{x}\right)(2+x)\Bigg\vert\;_a^1+2ln(x)\Bigg\vert\;_a^1 \right]\)
\(\displaystyle =\lim_{a\to 0^{+}}\left[3ln3-ln\left(\frac{2+a}{a}\right)(2+a)+2ln1-2ln(a)\right]\)
\(\displaystyle =3ln3-\lim_{a\to 0^{+}}\left[(ln(2+a)-ln(a))(2+a)+2ln(a)\right]\)
\(\displaystyle =3ln3-\lim_{a\to 0^{+}}\left[2ln(2+a)+aln(2+a)-2ln(a)-aln(a)+2ln(a)\right]\)
\(\displaystyle =3ln3-2ln2\)
\(\displaystyle =ln27-2ln2\)

\(=2ln2+ln27-2ln2\)
\(=ln27\)
∵\(\displaystyle \lim_{n\to \infty}ln \root n \of {\frac{(3n)!}{(n!)^3}}=ln27\)
∴\(\displaystyle \lim_{n\to \infty}\root n \of {\frac{(3n)!}{(n!)^3}}=27\)






\(\displaystyle \lim_{n\to \infty}\frac{1}{n}ln\left(\frac{(2n)!}{n^n n!}\right)\)?
https://math.stackexchange.com/q ... sum-of-log-function

二、計算證明題
1.
若方程式\(x^3+2x^2+3=0\)之三根為\(\alpha,\beta,\gamma\),求\(\displaystyle |\;(\frac{1}{\alpha}-\frac{1}{\beta})(\frac{1}{\beta}-\frac{1}{\gamma})(\frac{1}{\gamma}-\frac{1}{\alpha})|\;\)之值為?

感謝Ellipse提醒,公式要缺\(x^2\)項
\(x^3+px+q=0\)的三根為\(\alpha,\beta,\gamma\)則\((\alpha-\beta)^2(\beta-\gamma)^2(\gamma-\alpha)^2=-4p^3-27q^2\)
證明,https://math.pro/db/viewthread.php?tid=164&page=2#pid18936

3.
\(a,b,c\)皆正,且\(a+b+c=3\),試證\(\displaystyle \frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}\ge \frac{3}{2}\)
中一中合作盃金頭腦第37次有獎徵答,檔案有解答

附件

中一中合作盃金頭腦第37次有獎徵答.zip (82.27 KB)

2023-5-7 16:32, 下載次數: 3011

TOP

請問填充1

[ 本帖最後由 CYC 於 2023-5-8 00:02 編輯 ]

TOP

計算1
原設計的方程式要改成缺x² 項,使用-4p^3-27q² 公式

[ 本帖最後由 Ellipse 於 2023-5-7 21:26 編輯 ]

TOP

引用:
原帖由 CYC 於 2023-5-7 20:28 發表
請問填充1,10
填充1
解出一個答案
(看3,4,5的畢氏組)

[ 本帖最後由 Ellipse 於 2023-5-7 21:11 編輯 ]

TOP

回覆 4# Ellipse 的帖子

計算第 1 題
以  α、 β 、γ 為三根的方程式是 x^3 + 2x^2 + 3 = 0
以  1/α、 1/β 、1/γ 為三根的方程式是 3x^3 + 2x + 1 = 0,即 x^3 + (2/3)x + (1/3) = 0
這樣就可以用那個公式了

TOP

回覆 5# Ellipse 的帖子

謝謝老師

TOP

填3

TOP

計算第 2 題
先證:任意四個整數中,必可找到兩個整數經由相加、相減或相乘,成為 8 的倍數

(1) 四數中至少有一個 8 的倍數
選 8 的倍數和另一數相乘

(2) 四數均不為 8 的倍數
若有兩數除以 8 的餘數相同
兩數相減

若四數除以 8 的餘數均不同,由於除以 8 的餘數可分成 (1,7)、(3,5)、(2,4,6) 這三組,由鴿籠原理,此四數必至少有兩數在同一組
此三組中,(1,7)、(3,5)、(2,6),兩數相加
(2,4)、(4,6),兩數相乘


再證:任意兩個整數必可經由相加、相減或相乘,成為 3 的倍數

(1) 兩數中至少有一個 3 的倍數
兩數相乘

(2) 兩數均不為 3 的倍數
若兩數除以 3 的餘數相同,則兩數相減
若兩數除以 3 的餘數不同,則兩數相加

最後再把上面兩組數相乘,即為 24 的倍數

TOP

填8

TOP

 35 1234
發新話題