計算5
求\(7x^2+6y^2=5z^2\)的整數解。
[解答]
若\((x,y,z)\)為一組解,三數皆非0,並假設其互質
\(7x^2+6y^2\equiv 5z^2\pmod{5}\)
\(\Rightarrow 2x^2+y^2\equiv 0\pmod{5}\)
\(\Rightarrow x^2\equiv y^2\equiv 0\pmod{5}\Rightarrow x\equiv y\equiv 0\pmod{5}\)
代回原式,可得\(x\equiv y\equiv z\equiv 0\pmod{5}\)(與假設不合)
故\((x,y,z)\)至少有一數為\(0\Rightarrow (x,y,z)\)只有一組解\((0,0,0)\)