發新話題
打印

106羅東高中

回復 7# BambooLotus 的帖子

小弟的作法是坐標化

[ 本帖最後由 eyeready 於 2017-6-22 09:09 編輯 ]

附件

螢幕快照 2017-06-22 上午9.09.17.png (45.78 KB)

2017-6-22 09:09

螢幕快照 2017-06-22 上午9.09.17.png

TOP

小弟算的參考答案,麻煩偵錯一下囉!感謝!

第1題 \(\displaystyle \frac{{\rm{1}}}{{{\rm{2}}^{{\rm{89}}} }} \) (thepiano大校正)
第2題 \(\displaystyle {\rm{2 + }}\sqrt {\rm{3}} \)
第3題 \(\displaystyle ln2\)
第4題 \(13 \le m < \frac{{53}}{4}\)
第5題 \(\displaystyle \frac{{8\sqrt {10} }}{{25}} \)
第6題 \(\displaystyle  \frac{{128}}{3} \) (thepiano 大校正)
第7題 \(7:1\)
第8題 \(\displaystyle 37\sqrt 3  \)
第9題 \(\displaystyle P(n) = (-\frac{1}{7})^{n-1} \times (-\frac{1}{{14}})+\frac{1}{2},n \ge 1\)
第10題 \(\displaystyle \frac{11}{9} \)
第11題 \(-15\)
第12題 12

笫1題
\(
\begin{array}{l}
\displaystyle 原式= \frac{{{\rm{sin1}}^ \circ   \times {\rm{sin2}}^ \circ   \times {\rm{sin3}}^ \circ   \times ... \times {\rm{sin179}}^ \circ  }}{{{\rm{sin2}}^ \circ   \times {\rm{sin4}}^ \circ   \times ... \times {\rm{sin178}}^ \circ }} \\
\displaystyle  = \frac{{{\rm{(sin1}}^ \circ   \times {\rm{sin2}}^ \circ   \times ... \times {\rm{sin89}}^ \circ  )^2 }}{{2^{89}  \times ({\rm{sin1}}^ \circ   \times {\rm{sin2}}^ \circ   \times ... \times {\rm{sin89}}^ \circ  ) \displaystyle \times (\cos {\rm{1}}^ \circ   \times \cos {\rm{2}}^ \circ   \times ... \times \cos {\rm{89}}^ \circ  )}} \\
\displaystyle  = \frac{{\rm{1}}}{{{\rm{2}}^{{\rm{89}}} }} \\
\end{array}
\)

第6題
\(
\begin{array}{l}
\displaystyle  z_1  = 48 \\
\displaystyle  z_2  = 48 \times (\frac{{\sqrt 2 }}{2}) \times (\cos 30^ \circ   + i\sin 30^ \circ  ) \\
\displaystyle  z_3  = 48 \times (\frac{{\sqrt 2 }}{2})^2 (\cos 60^ \circ   + i\sin 60^ \circ  ) \\
..... \\
\displaystyle  z_{k + 1}  = 48 \times (\frac{{\sqrt 2 }}{2})^k (\cos \frac{{k\pi }}{6} + i\sin \frac{{k\pi }}{6}) \\
由上述討論並觀察出等比數列 \displaystyle  a_1 = z_1 = 48,a_2 = z_7 =48 \times (\frac{{\sqrt 2 }}{2})^6  \times ( - 1),a_3 = z_{13} = 48 \times (\frac{{\sqrt 2 }}{2})^{12}  \times 1,... \\
\displaystyle  \sum\limits_{k = 1}^\infty  {a_k } = \frac{{48}}{{1 - \left[ { - \left( {\frac{{\sqrt 2 }}{2}} \right)^6 } \right]}} = \frac{{128}}{3} \\
\end{array}
\)

第12題 (另解 根與係數關係)
\(
\begin{array}{l}
\left\{ \begin{array}{l}
a + b = 9 - c \\
ab = - 9c + c^2  \\
\end{array} \right. \\
實數a、b為x^2  + ( - 9 + c)x + (c^2  - 9c) = 0之根 \\
判別式D \ge 0,(- 9 + c)^2 - 4\times 1\times (c^2 - 9c) \ge 0 \\
令a + b = t, -3t^2 + 36t \ge 0可推得0 \le t \le 12 \\
故a+b最大值為12
\end{array}
\)

[ 本帖最後由 eyeready 於 2017-6-22 14:50 編輯 ]

TOP

回復 11# thepiano 的帖子

不愧是鋼琴大,剛剛重算一次,確實是小弟算錯了>"<

TOP

回復 13# yustarhunter 的帖子

\(
\begin{array}{l}
令 f(x) = x^2  - (m - 5)x + (m + 3) \\
判別式 \left[ {-(m-5)} \right]^2-4 \times 1 \times (m+3) \ge 0 \to m \ge 13 或 m \le 1 \\
對稱軸 1 < \frac{{m - 5}}{2} < 5 \to 7 < m < 15 \\
且f(1)f(5) > 0 \to m < \frac{{53}}{4} \\
\end{array}
\)

TOP

回復 16# BambooLotus 的帖子

回覆第一題,答案正確,只要代公式就好,相對簡單許多!

TOP

回復 19# yustarhunter 的帖子

第7題 考試當下可以用特殊三角形去做,會省很多時間
第6題  答案有誤

TOP

發新話題