18 12
發新話題
打印

台大資工105二階筆試B部分

推到噗浪
推到臉書

台大資工105二階筆試B部分

可以請問大家第4~6還有第8題的解法嗎
說實在都是一些沒看過的@@
謝謝大家~~

附件

105台大資工二階.pdf (433.81 KB)

2017-3-12 20:06, 下載次數: 111

TOP

回復 1# 李昶毅 的帖子

B4. 先把奇數項的負號改成正,再減去兩個奇數項
改正的部分和原偶數項裂項相消,
減去兩個奇數項的部分,也是裂項,但不相消變成 \( \frac{1}{1}-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}+\ldots \) 會變成 \( \arctan x \) 的Maclaurin series 代入 \( x=1 \)

\( \begin{aligned}\sum\frac{(-1)^{k}}{4k^{2}-1} & =\sum\frac{1}{4k^{2}-1}-2\sum\limits _{k\mbox{ odd}}\frac{1}{4k^{2}-1}\\
& =\frac{1}{2}\sum\left(\frac{1}{2k-1}-\frac{1}{2k+1}\right)-\sum\limits _{k\mbox{ odd}}\left(\frac{1}{2k-1}-\frac{1}{2k+1}\right)\\
& =\frac{1}{2}-\sum\limits _{k\mbox{ odd}}\frac{(-1)^{k+1}}{2k-1}=\frac{1}{2}-\tan^{-1}1=\frac{1}{2}-\frac{\pi}{4}
\end{aligned} \)
文不成,武不就

TOP

後面那一項是不是大學才會學到阿@@
好像不是我目前能力所及QQ

TOP

回復 1# 李昶毅 的帖子

B6. 感覺抄錯題目了

按上面的題目,移項提出 a-c,再用正弦定理、三角不等式可得 a-c=0

變成等腰三角形 a=c,無法求得角 C
文不成,武不就

TOP

回復 1# 李昶毅 的帖子

B5. 有類似題...

分解,配對,算幾

注意 \( a^2+ab+ac+bc = (a+b)(a+c) \)

及 \( 3a+b+2c = (a+b) + 2(a+c)\)

由算幾不等式有 \( \frac{3a+b+2c}{2}=\frac{(a+b)+(2a+2c)}{2}\geq\sqrt{2(a+b)(a+c)}=\sqrt{12+2\sqrt{20}}=\sqrt{10}+\sqrt{2} \)

故 \( 3a+b+2c \geq 2\sqrt{10} + 2\sqrt{2} \) (等號我懶得驗了...)
文不成,武不就

TOP

回復 4# tsusy 的帖子

B6
應是\((a-c)\left( \sin A+\sin C \right)=\left( a-b \right)\sin B\)

TOP

回復 6# thepiano 的帖子

B6. 那就正弦定理,把三個正弦換成邊長,移項再同除以 ab 得

\( \cos C=\frac{a^{2}+b^{2}-c^{2}}{2ab}=\frac{1}{2}\Rightarrow\angle C=60^{\circ} \)

*************眼殘,下面兩行可以當作沒看到*************
\( \sin A+\sin B=2\sin\frac{A+B}{2}\cos\frac{A-B}{2}=\sqrt{3}\cos\frac{A-B}{2} \)

當 \( \angle A=\angle B=60^{\circ} \) 時 \( \sin A + \sin B \) 達最大值 \( \sqrt{3} \)
*************眼殘,上面兩行可以當作沒看到*************

[ 本帖最後由 tsusy 於 2017-3-12 22:33 編輯 ]
文不成,武不就

TOP

回復 1# 李昶毅 的帖子

B8
題目要寫清楚
過\(P\left( 1,3 \right)\)的直線與圓\({{x}^{2}}+{{y}^{2}}=4\)交於\(A\left( {{x}_{1}},{{y}_{1}} \right)\)、\(B\left( {{x}_{2}},{{y}_{2}} \right)\)兩點

過\(A\left( {{x}_{1}},{{y}_{1}} \right)\)和\(B\left( {{x}_{2}},{{y}_{2}} \right)\)分別作圓的切線,兩切線交於\(Q\left( a,b \right)\)

直線\(AQ\)的方程式為\({{x}_{1}}x+{{y}_{1}}y=4\)
直線\(BQ\)的方程式為\({{x}_{2}}x+{{y}_{2}}y=4\)

\(\left\{ \begin{align}
  & a{{x}_{1}}+b{{y}_{1}}=4 \\
& a{{x}_{2}}+b{{y}_{2}}=4 \\
\end{align} \right.\)

直線\(AB\)的方程式為\(ax+by=4\)
又\(P\left( 1,3 \right)\)在\(ax+by=4\)上,\(a+3b=4\)

故\(Q\left( a,b \right)\)的軌跡方程式為\(x+3y=4\)

TOP

回復 7# tsusy 的帖子

寸絲兄,您看錯題目,是要求\(\sin A\sin B\)的最大值

TOP

回復 9# thepiano 的帖子

眼殘了,不過做法沒差多少

\( \sin A \sin B = - \frac12 \left( \cos (A+B) - \cos (A-B) \right) \)
\( = \frac12 \cos (A-B) + \frac14 \leq \frac 34 \)

當 \( \angle A = \angle B = 60^\circ \) 達最大值 \( \frac 34 \)
文不成,武不就

TOP

 18 12
發新話題