發新話題
打印

104彰化高中

回復 10# Ellipse 的帖子

計算4. 同感,但這題是不等式,即使的打錯的題目還是能做,只是會很難做

基本上可以利用 \( \frac 1k > \frac 1{k+1} \) 得到 \( \displaystyle \sum_{k=1}^{n}\frac{5^{k}C_{k}^{n}}{k}\geq \sum_{k=1}^{n}\frac{5^{k}C_{k}^{n}}{k+1}=\frac{1}{5\cdot(n+1)}\sum_{k=1}^{n}5^{k+1}C_{k+1}^{n+1}=\frac{6^{n+1}-1}{5(n+1)}-1 \)

由此可得 \( n =2020 \) 時,\( \sum_{k=1}^{n}\frac{5^{k}C_{k}^{n}}{k} \geq 6^{2015} \)。基本上猜測就是 2020 了。

剩下是另一端的不等式,而 \( n = 2019 \) 時 \( \frac{6^{2020}-1}{5\cdot2020}-1 \approx 6^{2015}\cdot \frac{6^5}{5\cdot2020} \approx  0.77 \cdot 6^{2015} \)

再估得準一些 \( \displaystyle \sum_{k=4}^{n}\frac{5^{k}C_{k}^{n}}{k}\leq\frac{5}{4}\sum_{k=4}^{n}\frac{5^{k}C_{k}^{n}}{k+1}=\frac{1}{4\cdot(n+1)}\sum_{k=4}^{n}5^{k+1}C_{k+1}^{n+1}\leq\frac{6^{n+1}}{4(n+1)} \)

故 \( \sum_{k=1}^{n}\frac{5^{k}C_{k}^{n}}{k}\leq\frac{6^{n+1}}{4(n+1)}+\frac{5C_{1}^{n}}{1}+\frac{5^{2}C_{2}^{n}}{2}+\frac{5^{3}C_{3}^{n}}{3}\leq\frac{6^{n+1}}{4(n+1)}+(5n)^{3} \)

\( n=2019 \) 時 \( \displaystyle \sum_{k=1}^{n}\frac{5^{k}C_{k}^{n}}{k} \leq \frac{486}{505}\cdot6^{2015}+10095^{3}\)

比較 \( \frac{19}{505}\cdot6^{2015} \) 和 \( 10095^{3} \) 可得 \( 10095^{3} \ll \frac{19}{505}\cdot6^{2015} \) (可用 log)

故 \( n=2019 \) 時 \(  \displaystyle \sum_{k=1}^{n}\frac{5^{k}C_{k}^{n}}{k} \leq 6^{2015} \)

[ 本帖最後由 tsusy 於 2015-4-29 10:33 PM 編輯 ]
網頁方程式編輯 imatheq

TOP

發新話題