人生沒有太多的應該,
只有感謝。
註冊
登入
會員
幫助
Math Pro 數學補給站
»
高中的數學
»
IV:線性代數
» 請教一題拋物線問題
‹‹ 上一主題
|
下一主題 ››
發新話題
發佈投票
發佈商品
發佈懸賞
發佈活動
發佈辯論
發佈影片
打印
請教一題拋物線問題
fuzzydog
發私訊
加為好友
目前離線
1
#
大
中
小
發表於 2014-4-12 22:11
只看該作者
請教一題拋物線問題
如附件這題我覺得有點像93年的學測題,但我做到後面卡住了,所以想請教老師們是不是我方法用錯,或是漏了哪一個性質。
附件
789.jpg
(8.94 KB)
2014-4-12 22:11
790.jpg
(33.72 KB)
2014-4-12 22:11
UID
1454
帖子
22
閱讀權限
10
上線時間
32 小時
註冊時間
2013-5-4
最後登入
2023-7-22
查看詳細資料
TOP
weiye
瑋岳
發私訊
加為好友
目前離線
2
#
大
中
小
發表於 2014-4-12 22:30
只看該作者
回復 1# fuzzydog 的帖子
縱坐標是 \(y\) 坐標,
若令 \(A(x_1,y_1), B(x_2,y_2)\)
則 \(\displaystyle\frac{y_1+y_2}{2}=\frac{15}{2}\)
\(\Rightarrow y_1+y_2=15\)
所求=\(15+2\times3=21.\)
多喝水。
UID
1
帖子
2215
閱讀權限
200
上線時間
8497 小時
註冊時間
2006-3-5
最後登入
2024-12-21
查看詳細資料
TOP
weiye
瑋岳
發私訊
加為好友
目前離線
3
#
大
中
小
發表於 2014-4-12 23:01
只看該作者
回復 2# weiye 的帖子
若題目真的把 "縱坐標" 改成 "橫坐標"
可由 \(x_1^2=12y_1\) 與 \(x_2^2=12y_2\)
兩式相減,搭配 \(\displaystyle\frac{x_1+x_2}{2}=\frac{15}{2}\)
可得 直線 \(AB\) 斜率 \(\displaystyle=\frac{y_2-y_1}{x_2-x_1}=\frac{5}{4}\),
令 \(\displaystyle t=\frac{y_1+y_2}{2}\)
進而得直線方程式為 \(\displaystyle y-t=\frac{4}{3}\left(x-\frac{15}{2}\right)\)
將 \(\displaystyle y=\frac{1}{12}x^2\) 帶入,整理得 \(x^2-16x-12t+120=0\)
(因為直線與拋物線有兩交點)由判別式\(>0\),可得 \(\displaystyle t>\frac{4}{3}\)
可得任意 \(\displaystyle t>\frac{4}{3}\) 對應之直線 \(\displaystyle y-t=\frac{4}{3}\left(x-\frac{15}{2}\right)\) (平行直線系)
其與拋物線所截的(平行)弦的中點 \(x\) 坐標皆為 \(\displaystyle \frac{15}{2}\)
且 \(\displaystyle\overline{AF}+\overline{BF}=2t+6>\frac{26}{3}\),即 \(\displaystyle\overline{AF}+\overline{BF}\) 的最大下界是 \(\displaystyle\frac{26}{3}\)
ps. 當 \(\displaystyle t=\frac{4}{3}\),沒有弦,\(A\) 與 \(B\) 重合,是切點,上述中那條直線會是切線。\(\displaystyle\overline{AF}+\overline{BF}\) 沒有最小值。
多喝水。
UID
1
帖子
2215
閱讀權限
200
上線時間
8497 小時
註冊時間
2006-3-5
最後登入
2024-12-21
查看詳細資料
TOP
fuzzydog
發私訊
加為好友
目前離線
4
#
大
中
小
發表於 2014-4-12 23:12
只看該作者
回復 3# weiye 的帖子
不好意思,原來我把題目看錯了,感謝 weiye 老師兩種情況都解釋了。
UID
1454
帖子
22
閱讀權限
10
上線時間
32 小時
註冊時間
2013-5-4
最後登入
2023-7-22
查看詳細資料
TOP
‹‹ 上一主題
|
下一主題 ››
控制面板首頁
編輯個人資料
積分交易
積分記錄
公眾用戶組
基本概況
版塊排行
主題排行
發帖排行
積分排行
交易排行
上線時間
管理團隊