引用:
原帖由 pizza 於 2012-6-15 04:48 PM 發表
謝謝老王的心路歷程,其中有幾題有疑惑想請問一下,
第七題該怎麼算出k的值等於0,3/16,8?
第八題我看不太出切點為(e,1)?,剛開始不是先假設切線為y=kx,然後算交點,到算交點的地方就卡住了,
希望高手可以解答一下我的疑 ...
#7
已知方程式\(\displaystyle x^3-x^2-kx+\frac{3}{2}k=0\)有3個相異的實數解,試求\(k\)的範圍為
。
[解答[
設\(y = {x^3} - {x^2}\)與\(y = k(x - \frac{3}{2})\)切於一點\((t,{t^3} - {t^2})\)
\(\frac{{{t^3} - {t^2}}}{{t - \frac{3}{2}}} = 3{t^2} - 2t\)
解得\(t = 0,\frac{3}{4},2\)
代入\(k = 0,\frac{3}{{16}},8\)
利用微分與求根可大概畫出\(y = {x^3} - {x^2}\)的圖形
可發現要有三交點
\(0 < k < \frac{3}{{16}},k > 8\)
#8
曲線\(\Gamma\)為\(f(x)=ln x\)的圖形,過原點\(O\)與\(\Gamma\)相切之切線為\(L\),\(\Gamma\)與切線\(L\)及\(x\)軸所圍成之區域為\(R\),試問\(R\)繞\(x\)軸旋轉,所得的旋轉體積為
。
[解答]
\(y = \ln x\)與\(y = mx\)相切於\((s,t)\)
則\(m = \frac{1}{s}\),代回直線可得\(t = 1\),即\(\ln x = 1\)
故切點為\((e,1)\)
接下來旋轉體積的部份就分割成兩部分積分吧
分成(0,1)與(1,e)