發新話題
打印

100全國高中聯招

推到噗浪
推到臉書
選擇8  可以參考老王老師那邊的漂亮解法

選擇9
利用tan 的和角公式就可以了
或者  利用座標化搭配和角公式硬求

附件

100全國選擇9.rar (7.15 KB)

2011-6-26 16:53, 下載次數: 3833

TOP

綜合7

先去算 \( \alpha 與 \beta \)的長度關係  與  夾角
然後利用 \(|\alpha - \beta |=2 \sqrt{3}可知道 \alpha 與 \beta 的距離\)
利用這兩點  可以得到 \( | \alpha |\)  就可以算面積

[ 本帖最後由 iamcfg 於 2011-6-29 11:57 PM 編輯 ]

TOP

\(S=w+2w^2+3w^3+.....+9w^9\)
\(wS=        w^2+2w^3+.....+8w^9+9w^{10}\)
相減
\((1-w)S=w+w^2+w^3+.....+w^9-9w^{10}\)
剩下取絕對質化簡就可以做出來了

TOP

引用:
原帖由 gamaisme 於 2011-6-29 07:04 PM 發表
設 X = u+v ,Y = u-v 帶入就可看出極值
又或者用轉軸方程式將它轉成橢圓一般式也可以看出極值
提供這題另外一種想法
假設\( x=r \cos{\theta}          y=r \sin{\theta}\)
\(x^2+y^2=r^2\)  求其極值  代入前面的式子整理
\( r^2+r^2 \cos{\theta} \sin{\theta} =6\)
\(\displaystyle{r^2=\frac{6}{1+\cos{\theta} \sin{\theta}}}\)
當\(\displaystyle{\cos{\theta} \sin{\theta}= - \frac{1}{2}}\)有Max12
當\(\displaystyle{\cos{\theta} \sin{\theta}=  \frac{1}{2}}\)有Max 4

[ 本帖最後由 iamcfg 於 2011-6-29 10:50 PM 編輯 ]

TOP

回復 18# Ellipse 的帖子

多謝橢圓兄
小弟計算錯了  囧

TOP

發新話題