發新話題
打印

100華江高中

回復 4# arend 的帖子

令 \(A(4,1,3), B(4,1,9),Q=(A+B)/2=(4,1,6)\)

且 \(P(x,y,z)\) 為平面 \(z=x+y\) 上的動點,


因為 \(\overline{PA}^2+\overline{PB}^2 = 2(\overline{AQ}^2+\overline{PQ}^2)\)(即三角形的中線定理)

所以,當 \(P\) 為 \(Q\) 在平面 \(x+y-z=0\) 的垂足時,

   \(\overline{PQ}\) 有最小值,

   此時 \(\overline{PA}^2+\overline{PB}^2\) 會有最小值。

多喝水。

TOP

回復 6# arend 的帖子

其實我上面的回覆也看錯了,

因為 \(\left(\left(x-4\right)^2+\left(y-1\right)^2+\left(x+y-3\right)^2\right)^2+\left(\left(x-4\right)^2+\left(y-1\right)^2+\left(x+y-9\right)^2\right)^2=PA^4+PB^4\)

而不是 \(PA^2+PB^2\) .... 哈~我眼花也看錯!


如果原題目是 \(\sqrt{\left(x-4\right)^2+\left(y-1\right)^2+\left(x+y-3\right)^2}+\sqrt{\left(x-4\right)^2+\left(y-1\right)^2+\left(x+y-9\right)^2}=\overline{PA}+\overline{PB}\)

因為 \(A,B\) 在 \(x+y-z=0\) 的異側,

所以直接找直線 \(\overleftrightarrow AB\) 與 \(x+y-z=0\) 的交點,即為 \(P\) 點,

且所求最小值為 \(\overline{AB}\) 長度。

多喝水。

TOP

回復 16# hua77825 的帖子

填充第 7 題(也是硬做~:P)

令 \(f'(x) = ax(x-6)=ax^2-6ax,\)

   \(\displaystyle f(x)=\frac{ax^3}{3}-3ax^2+k\)

再由 \(f(0)=10,f(6)=2\) ,可解得 \(a,k\) 之值。

剩下就是多項式的定積分。

多喝水。

TOP

發新話題