發新話題
打印

100中和高中

回復 1# waitpub 的帖子

第 6 題. a+b=√3,ab=1,求a^100+b^100

解答:

解聯立方程式(a+b=√3, ab=1),

可得 \(\displaystyle a=\frac{\sqrt{3}+i}{2},b=\frac{\sqrt{3}-i}{2}\) 或 \(\displaystyle a=\frac{\sqrt{3}-i}{2},b=\frac{\sqrt{3}+i}{2}\)

則,所求 \(\displaystyle a^{100}+b^{100}=\left(\frac{\sqrt{3}+i}{2}\right)^{100}+\left(\frac{\sqrt{3}-i}{2}\right)^{100}\)

       \(\displaystyle =\left(\cos 30^\circ+i\sin 30^\circ\right)^{100}+\left(\cos \left(-30^\circ\right)+i\sin \left(-30^\circ\right)\right)^{100}\)

         <套用隸美弗定理,可得如下>

       \(\displaystyle =\left(\cos 3000^\circ+i\sin 3000^\circ\right)+\left(\cos \left(-3000^\circ\right)+i\sin \left(-3000^\circ\right)\right)\)

       \(=2\cos 3000^\circ\)

       \(=2\cos 120^\circ\)

       \(=-1\)

(當然有人對公式很熟的話,也可以利用 \(\displaystyle a+\frac{1}{a}=\sqrt{3}=2\cos 30^\circ\Rightarrow a^{100}+\frac{1}{a^{100}}=2\cos3000^\circ\))

多喝水。

TOP

回復 1# waitpub 的帖子

11.A=[a_{ij}],a_{ij} 屬於{0,1,2},A為2*2矩陣,試問可逆的A有幾個?

解答:

題目等同於 「設 \(a,b,c,d\in\left\{0,1,2\right\}\),求滿足 〝\(ad\) 不等於 \(bc\)〞 的解 \((a,b,c,d)\) 有多少組?」

先來求 \(ad=bc\) 的有幾組好了~

case i: 等號左右兩邊都是零

    \(\left(3\cdot 3 - 2\cdot 2\right)\cdot\left(3\cdot 3 - 2\cdot 2\right)=25\) 組

case ii: 等號左右兩邊都不是零

    case a: 等號左右兩邊都是 \(1\)

        有 \(1\) 組

    case b: 等號左右兩邊都是 \(2\)

        \((a,d)=(1,2)\) 或 \((2,1)\)

        搭配 \((b,c)=(1,2)\) 或 \((2,1)\)

        有 \(2\cdot2=4\) 組

    case c: 等號左右兩邊都是 \(4\)

        有 \(1\) 組

所以滿足 \(ad=bc\) 的有 \(31\) 組,

那滿足 〝\(ad\) 不等於 \(bc\)〞 的就有 \(3^4-31=50\) 組。

多喝水。

TOP

回復 3# weiye 的帖子

7.二項分佈(n,p)=(5,1/2),x表成功的次數
(1)求P(u-σ<X<u+σ)
(2)結果是否和常態分佈相同


解答:

※※ 小弟對於統計並不是很擅長,以下敘述如果有錯誤的地方,

   或是有在統計上敘述的不妥之處,希望有統計高手能不吝告知。


二項分佈的平均數 \(\displaystyle \mu=np=5\cdot\frac{1}{2}=\frac{5}{2}\)

     標準差 \(\displaystyle \sigma=\sqrt{np\left(1-p\right)}=\frac{\sqrt{5}}{2}\)


     (以上兩者的證明請見 google

(1) 題目所求 \(\displaystyle P(\frac{5-\sqrt{5}}{2}<X<\frac{5+\sqrt{5}}{2})\)

        \(=P(1.38...<X<3.61...)\)

        \(=P(X=2)+P(X=3)\)

        \(\displaystyle =C^5_2\left(\frac{1}{2}\right)^2\cdot\left(\frac{1}{2}\right)^3+C^5_3\left(\frac{1}{2}\right)^3\cdot\left(\frac{1}{2}\right)^2\)

        \(\displaystyle =\frac{5}{8}=0.625\)


(2)如果是常態分佈的話,P(u-σ<X<u+σ)=68.xxx%\(=0.68...\),

   所以只是近似於常態分佈,而非常態分佈。

多喝水。

TOP

回復 6# Joy091 的帖子

引用:
原帖由 Joy091 於 2011-5-26 10:40 AM 發表
建議將隨機變數 \(\displaystyle x\) 用 大寫 \(\displaystyle X\) 來表示
已修改,感謝! ^__^

多喝水。

TOP

發新話題