發新話題
打印

101中壢高中

引用:
原帖由 Ellipse 於 2012-5-29 12:49 AM 發表

計算1
大概講一下
假設向量PQ=向量a,向量PR=向量b,向量PS=向量c
依題意可知向量SQ=向量u,向量SR=向量v
在四邊形PQRS中,角QPR=120度,角QSR=60度
可知PQSR四點共圓
而當PS=|向量c|=此圓直徑時(即角PRS=PQS=90度)
|向 ...
請問PQRS這四個點一定會構成四邊形嗎?

TOP

回復 22# hua0127 的帖子

謝謝你,我覺得這題應該是希望直接應用結果,不然怎會放填充題且直接是問正三角形的面積,考前實在應該看一下板中考了什麼,哀!

TOP

引用:
原帖由 casanova 於 2012-5-30 03:28 PM 發表


請問PQRS這四個點一定會構成四邊形嗎?
或許要再加上這個情況?

已知角QPR=120度  角QSR=60度

若作一圓過QRS  則P必為圓心  所以這種情況下 |c|=|PS|=1<2

[ 本帖最後由 sanghuan 於 2012-5-30 04:41 PM 編輯 ]

附件

101壢中計1jpg.jpg (12.75 KB)

2012-5-30 16:33

101壢中計1jpg.jpg

TOP

回復 19# tsusy 的帖子

請問這題型是不是哪一家有出過,因為感覺有看過.但忘了

TOP

回復 24# Ellipse 的帖子

和 # 33 重覆了,沒注意到,以下可以跳過了

計算 1. Rudin 大師是對的

如果把橢圓兄的 \( S \) 對 \( \overleftrightarrow{QR} \) 作對稱的話,角度仍然是 \( 60^\circ \),此時四點不共圓



其實所以滿足 \( 60^\circ \) 的點夠成的圖是 \(QSR \) 優弧 和 \( QS'R \) 優弧

不過 \( QS'R \) 弧的圓心恰好就是 \( P \) 因此如果 \( S' \) 所代表的 \( |\vec{c}| =1 \)

不影響最大值

[ 本帖最後由 tsusy 於 2012-5-30 10:59 PM 編輯 ]
網頁方程式編輯 imatheq

TOP

引用:
原帖由 tsusy 於 2012-5-30 02:45 PM 發表
填充 7. 承 shiauy 所說,旋轉 90 度,所以 \( \angle P'BP = 90^\circ \)

計算得 \( \overline{P'P} = 5\sqrt{2} \), 再由畢氏逆定理得 \( \angle P'AP = 90^\circ \)

因此四邊形 \( P'APB \) 對角互補,為圓內接四邊形 ...
tsusy老師你好

在下資質遲鈍
你所述 ~~再由畢氏逆定理得 \( \angle P'AP = 90^\circ \)
這邊我還是看不懂

所謂'畢氏逆定理"我沒有學過

我有用geogebra畫過圖,還是看不出來

不過還是謝謝你
我再想想

TOP

引用:
原帖由 sanghuan 於 2012-5-30 04:33 PM 發表

或許要再加上這個情況?

已知角QPR=120度  角QSR=60度

若作一圓過QRS  則P必為圓心  所以這種情況下 |c|=|PS|=1
感謝指正,一個人想,偶而還是會有沒注意到的地方
透過大家討論,可以將解題內容變得更完美
所以才會將自己的想法po在上面
我是不怕解錯答案,
只怕自己觀念不對
而自己還不知道~

TOP

回復 29# hua0127 的帖子

謝謝,我知道了:)

TOP

回復 37# Ellipse 的帖子

大家一起討論感覺超好  
總好過一個人在那空想

橢圓老師對計算1的切入點真的很棒  
我還沒想到呢

TOP

引用:
原帖由 Ellipse 於 2012-5-30 06:39 PM 發表


感謝指正,一個人想,偶而還是會有沒注意到的地方
透過大家討論,可以將解題內容變得更完美
所以才會將自己的想法po在上面
我是不怕解錯答案,
只怕自己觀念不對
而自己還不知道~ ...
謝謝你的解題,你常常深夜都還在線上,有這個板讓全國教師了解更多數學問題,大家一起進步!

TOP

發新話題