回復 13# johncai 的帖子
第四題答案
不失一般性,把半圓圓心設在原點。半徑為 r,A點固定放在 A(a,0) \(r \ge 0,a > 0\)
\(B(r\cos \theta ,r\sin \theta ),{0^0} \le \theta \le {180^0}\) ,移動B點,可以觀察出 \(\overline {OC} \)發生最大值的地方,
會在第一象限\({C_1}\)的時候,令\({C_1} = C\)。設\(C(x,y)\)
\[\begin{array}{l}
\left( {x - a} \right) + yi = \left\{ {\left( {r\cos \theta - a} \right) + ir\sin \theta } \right\}\left\{ {\cos \left( { - {{60}^0}} \right) + i\sin \left( { - {{60}^0}} \right)} \right\}\\
.................. = \left\{ {\frac{1}{2}r\cos \theta - \frac{1}{2}a + \frac{{\sqrt 3 }}{2}r\sin \theta } \right\} + i\left\{ {\frac{1}{2}r\sin \theta - \frac{{\sqrt 3 }}{2}r\cos \theta + \frac{{\sqrt 3 }}{2}a} \right\}
\end{array}\]
\[x - a = \left\{ {\frac{1}{2}r\cos \theta - \frac{1}{2}a + \frac{{\sqrt 3 }}{2}r\sin \theta } \right\} \Rightarrow x = \left\{ {\frac{1}{2}r\cos \theta + \frac{1}{2}a + \frac{{\sqrt 3 }}{2}r\sin \theta } \right\}\]
\[y = \left\{ {\frac{1}{2}r\sin \theta - \frac{{\sqrt 3 }}{2}r\cos \theta + \frac{{\sqrt 3 }}{2}a} \right\}\]
\[\begin{array}{l}
{x^2} + {y^2} = {r^2} + {a^2} + ar\left\{ {\sqrt 3 \sin \theta - \cos \theta } \right\}\\
............ = {r^2} + {a^2} + ar\left( 2 \right)\left\{ {\sin \theta \cos {{30}^0} - \cos \theta \sin {{30}^0}} \right\}\\
............ = {r^2} + {a^2} + ar\left( 2 \right)\sin \left( {\theta - {{30}^0}} \right)
\end{array}\]
當\[\theta - {30^0} = {90^0}\] 時,會產生最大值。 所以可以得到此時 \[\theta = {120^0}\]
動態檔案如下
[ 本帖最後由 shingjay176 於 2014-4-21 11:52 PM 編輯 ]
附件
-
1.gif
(345.45 KB)
-
2014-4-21 23:52