Board logo

標題: 求救!線性代數的rank和reduced row echelon form的問題 [打印本頁]

作者: HSH    時間: 2008-10-11 16:43     標題: 求救!線性代數的rank和reduced row echelon form的問題

請問一下這一題敘述用這種方式解釋對嗎?
(2)The rank of a m*n matrix A can not be zero, the term "full rank" means the rank of A equals m.
[自解]
No!零矩陣無rank,且full rank=min(m,n),即m,n中取最小值,不一定等於m


那想請問以下兩題是對的還是錯的?又該怎麼解釋呢?我不會寫
(7)Let Rref is the reduced row echelon form of matrix A, then the column space exactly equal to C(Rref) and the same for null space N(A)=N(Rref)

(9)IF rank of A, an m*n matrix, is n, then the nullity(i.e. dimension of null space) is 0.




歡迎光臨 Math Pro 數學補給站 (https://math.pro/db/) 論壇程式使用 Discuz! 6.1.0