P=(0, 1) 2P = (13, 13) 3P = (5, 5) 4P = (3, 15) 5P = (6, 17) 6P = (19, 2) 7P = (17, 9) 8P = (18, 0) | 9P = (17, 14) 10P = (19, 21) 11P = (6, 6) 12P = (3, 8) 13P = (5, 18) 14P = (13, 10) 15P = (0, 22) |
當\(a=0\)時 \(E:y^2+xy=x^3+0x^2+1\) | 當\(a=1\) \(E:y^2+xy=x^3+1x^2+1\) |
1.在\(GF(F_2)\)下的橢圓曲線點個數 \(E(F_2)=\{\;(\infty,\infty),(0,1),(1,0),(1,1) \}\;\) #\(E(F_2)=4\) 2.frobenius trace \(t\) \(t=q+1-\)#\(E(F_2)=2+1-4=-1\) 3.二階遞迴數列\(V_n\) \(V_0=2,V_1=t=-1\) \(V_n=V_1V_{n-1}-qV_{n-2}=-V_{n-1}-2V_{n-2}\) 4.在\(GF(F_{2^n})\)的橢圓曲線點個數 #\(E(F_{2^n})=2^n+1-V_n\) | 1.在\(GF(F_2)\)下的橢圓曲線點個數 \(E(F_2)=\{\;(\infty,\infty),(0,1) \}\;\) #\(E(F_2)=2\) 2.frobenius trace \(t\) \(t=q+1-\)#\(E(F_2)=2+1-2=1\) 3.二階遞迴數列\(V_n\) \(V_0=2,V_1=t=1\) \(V_n=V_1V_{n-1}-qV_{n-2}=V_{n-1}-2V_{n-2}\) 4.在\(GF(F_{2^n})\)的橢圓曲線點個數 #\(E(F_{2^n})=2^n+1-V_n\) |
求二階遞迴數列\(V_n+V_{n-1}+2V_{n-2}=0\)一般式 特徵方程式為\(x^2+x+2=0\),得二根\(\displaystyle x={-1\pm \sqrt{7}i \over 2}\) 設一般式\(\displaystyle V_n=c_1 \left({-1-\sqrt{7}i}\over 2\right)^n+c_2 \left({-1+\sqrt{7}i}\over 2\right)^n\) 將\(V_0=2,V_1=-1\)代入得到\(\cases{\displaystyle c_1+c_2=2 \cr c_1 \left({-1-\sqrt{7}i}\over 2\right)+c_2 \left({-1+\sqrt{7}i}\over 2\right)=-1}\) 解出\(c_1=c_2=1\) 一般式\(\displaystyle V_n=\left({-1-\sqrt{7}i}\over 2\right)^n+ \left({-1+\sqrt{7}i}\over 2\right)^n\) | 求二階遞迴數列\(V_n-V_{n-1}+2V_{n-2}=0\)一般式 特徵方程式為\(x^2-x+2=0\),得二根\(\displaystyle x={1\pm \sqrt{7}i \over 2}\) 設一般式\(\displaystyle V_n=c_1 \left({1-\sqrt{7}i}\over 2\right)^n+c_2 \left({1+\sqrt{7}i}\over 2\right)^n\) 將\(V_0=2,V_1=1\)代入得到 \(\cases{\displaystyle c_1+c_2=2 \cr c_1 \left({1-\sqrt{7}i}\over 2\right)+c_2 \left({1+\sqrt{7}i}\over 2\right)=1}\) 解出\(c_1=c_2=1\) 一般式\(\displaystyle V_n=\left({1-\sqrt{7}i}\over 2\right)^n+ \left({1+\sqrt{7}i}\over 2\right)^n\) |
歡迎光臨 Math Pro 數學補給站 (https://math.pro/db/) | 論壇程式使用 Discuz! 6.1.0 |