﻿ Math Pro 數學補給站

2018.07.06 筆試

https://math.pro/db/attachment.php?aid=4631&k=b27fea9dec46487f629f91485f70c5d1&t=1568896246

\begin{align} & {{\left( 1+\frac{1}{x} \right)}^{2}}+{{\left( \frac{\sqrt{3}}{x} \right)}^{2}}={{\left( x+1 \right)}^{2}} \\ & \sec B=x=\sqrt[3]{2} \\ \end{align}

https://math.pro/db/attachment.php?aid=4633&k=d0df0270ad95fc7af11f810a94769123&t=1568896246

[ 本帖最後由 laylay 於 2018-7-15 15:04 編輯 ]

https://math.pro/db/attachment.php?aid=4635&k=b28c119edaab6eac2a2fa3382b67f6d4&t=1568896246

$$\displaystyle f\left(x\right)=\left|4x-3a\right|+\left|5x-4a\right|=4\left|x-\frac{3a}{4}\right|+5\left|x-\frac{4a}{5}\right|$$

$$\displaystyle =4\left(\left|x-\frac{3a}{4}\right|+\left|x-\frac{4a}{5}\right|\right)+\left|x-\frac{4a}{5}\right|$$

$$\displaystyle \geq 4\left|\left(x-\frac{3a}{4}\right)-\left(x-\frac{4a}{5}\right)\right|+\left|x-\frac{4a}{5}\right|$$

$$\displaystyle =\frac{\left|a\right|}{5}+\left|x-\frac{4a}{5}\right|$$

$$\displaystyle\frac{\left|a\right|}{5}\geq a^2\Rightarrow \frac{\left|a\right|}{5} \geq \left|a\right|^2\Rightarrow \frac{-1}{5}\leq a\leq \frac{1}{5}$$

 歡迎光臨 Math Pro 數學補給站 (https://math.pro/db/) 論壇程式使用 Discuz! 6.1.0