\( \frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{n}{(n+1)!}+... \)
\( e^x=1+\frac{x}{1!}+\frac{x^2}{2!}+\frac{x^3}{3!}+\frac{x^4}{4!}+... \)
\( e^x=1+\frac{2x}{2!}+\frac{3x^2}{3!}+\frac{4x^3}{4!}+... \)
\( e=1+\frac{2}{2!}+\frac{3}{3!}+\frac{4}{4!}+... \)...(1)
\( e-2=\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+... \)...(2)
(1)式-(2)式得到答案
補充一題
試求級數\( \sum^\infty_{n=1} \frac{n^2}{n!} \)= (A)0 (B)1 (C)e (D)2e (E)\( \frac{e}{2} \)
(96北斗家商)
連結已失效h ttp://forum.nta.org.tw/examservice/showthread.php?t=38693