發新話題
打印

求空間中線段長

推到噗浪
推到臉書

求空間中線段長

長方形ABCD中,已知AB=4,AD=3,沿著AC將平面ABC摺起使與平面ACD夾角為60度,求此時的BD長為何?

101.5.21版主補充
長寬方別為4,3的長方形ABCD沿對角線\( \overline{AC} \)摺成\( 90^o \)的兩面角(即平面ABC與平面ACD夾\( 90^o \)),求空間中B和D的距離?
(101台中二中,http://math.pro/db/thread-1367-1-1.html)

102.11.17版主補充
長方形ABCD中,AB=3,BC=4,現沿BD將三角形ABD折起,使平面ABD與平面BCD的夾角為60度,此時AC的距離?
出自http://gb.tovery.net/jflai/ 542篇

請參考
http://dl.dropbox.com/u/48168846/ans/ans131112.swf

謝謝胡孟青老師提供很棒的詳解
請參考
http://dl.dropbox.com/u/48168846/ans/ans131113.swf

[ 本帖最後由 bugmens 於 2013-11-17 11:00 AM 編輯 ]

TOP

引用:
原帖由 chu1976 於 2008-6-8 12:12 PM 發表
長方形ABCD中,已知AB=4,AD=3,沿著AC將平面ABC摺起使與平面ACD夾角為60度,求此時的BD長為何?

如圖,作 BE⊥AC,且EF⊥AC,

由畢氏定理可求得 AC=5,

然後 ΔABC 的斜邊上得高 BE=12/5,

由畢氏定理,可得 CE 長,

由 ΔADC~ΔFEC 且 CE長,可得 EF 長、CF長,

 且 DF長=DC長-CF長,

在 ΔBEF 中,利用餘弦定理,可得 BF 長,

在 ΔBFC 中,利用餘弦定理,可得 cos ∠BFC

且 cos ∠DFB = -cos ∠BFC

在 ΔBFD 中,利用餘弦定理,可得 BD 長。

TOP

補充類似問題
將長方形ABCD沿著對角線\( \overline{AC} \)摺起,使平面ABC與平面ACD互相垂直,已知\( \overline{AB}= a \),\( \overline{BC}= b \),則以a,b表示\( \overline{BD} \)之長 =。
(94台中縣高中聯招)

矩形ABCD的一边\( \overline{AB}=\sqrt{2} \),由顶点B、D引对角线AC的垂线,垂足E、F恰将AC三等分,沿AC将此矩形对折,使得△ACD所在平面与△ABC所在平面垂直,求折起后点B、D之间的距离。
(新奧數教程 高二卷 第9講 截面、摺疊和展開)

101.4.8補充
直角梯形ABCD中,\( \overline{AB}// \overline{CD} \),\( ∠D=90^o \),\( \overline{AB}=\overline{AD}=a \),\( \overline{CD}=3a \),沿\( \overline{BD} \)將梯形折成\( 60^o \)的二面角,試求:此時A與C的距離為?
(99中壢高中,http://math.pro/db/viewthread.php?tid=951&page=2#pid2331)

(新奧數教程 高二卷 第9講 截面、摺疊和展開)

102.5.25補充
將桌上一長方形ABCD沿著對角線\( \overline{AC} \)摺起,使平面ABC與平面ACD互相垂直,已知\( \overline{AB}=\sqrt{7} \),\( \overline{BC}=\sqrt{2} \),則空間中\( \overline{BD} \)長為
(A)\( \displaystyle \frac{\sqrt{18}}{2} \) (B)\( \displaystyle \frac{\sqrt{28}}{3} \) (C)\( \displaystyle \frac{\sqrt{53}}{3} \) (D)\( \displaystyle \frac{\sqrt{45}}{3} \)
(102全國聯招,http://math.pro/db/thread-1620-1-1.html)

[ 本帖最後由 bugmens 於 2013-5-25 12:46 PM 編輯 ]

TOP

101.6.24補充
在矩形ABCD中,若\( \overline{AB}=2 \)、\( \overline{BC}=2 \sqrt{3} \),過\( \overline{AC} \)的中點O作\( \overline{EF} \perp \overline{AC} \)交\( \overline{AD} \)於E、交\( \overline{BC} \)於F,將平面ABFE沿\( \overline{EF} \)摺起,使得平面ABFE垂直平面CDEF,求此時\( cos∠BFC= \)?
(101陽明高中,http://math.pro/db/thread-1433-1-1.html)

-------------------------------
設有一張長方形的紙ABCD,已知\( \overline{AB}=8 \),\( \overline{BC}=4 \),通過對角線\( \overline{BD} \)的中點M且垂直於\( \overline{BD} \)的直線分別交\( \overline{AB} \)與\( \overline{CD} \)於E、F兩點,當以\( \overline{EF} \)為折線把紙ABCD折起來,使得平面AEFD垂直於平面EBCF,此時若\( ∠CFD=\theta \),\( 0<\theta<\pi \),則\( cos \theta= \)?
(100學年度北區第二次模擬考數甲,http://web.tcfsh.tc.edu.tw/jflai/rab/RA660.swf)

101,7,7補充
(101萬芳高中代理,http://math.pro/db/thread-1464-1-1.html)



[ 本帖最後由 bugmens 於 2012-7-7 09:07 AM 編輯 ]

附件

折成90度.rar (47.65 KB)

2012-4-9 05:02 PM, 下載次數: 500

TOP

關於SketchUp中 自定軸的旋轉

TOP

發新話題