發新話題
打印

111台中一中

請教填充甲第二題

TOP

回復 21# enlighten0626 的帖子

填充甲 第 2 題
△PAB/△PAC = sin∠PAB/sin∠PAC = 2/3
sin∠PAB/sin(π/3 - ∠PAB) = 2/3
用和角公式展開可求出
sin∠PAB = √3/√19
sin∠PAC = 3√3/(2√19)

同理可求出
sin∠PBA = √3/√7
sin∠PCA = 3√3/(2√13)

最後用正弦定理可求出 PA^2:PB^2:PC^2 = 19:7:13

TOP

回復 21# enlighten0626 的帖子

過P點做平行三邊的平行線,會將三角形切割成三個正三角形與三個平行四邊形,利用餘弦定理得,
PA^2=2^2+3^2-2*2*3*cos120°=19
PB^2=2^2+1^2-2*2*1*cos120°=7
PC^2=1^2+3^2-2*1*3*cos120°=13

TOP

謝謝以上老師的回覆

TOP

回復 15# PDEMAN 的帖子

感謝PDEMAN老師的作法 讓小弟恍然大悟
這邊容小弟詳細整理做法

反正重點就是,在y軸上找一個E點
讓題目給的圓軌跡\(\displaystyle x^2+y^2=16\)變成一個滿足\(\displaystyle \overline{AD}:\overline{DE}=4:1\)的阿波羅圓,由上面PDEMAN老師的圖形可以看出所求E為(0,1)

以下為驗算,考場可以不需要做這步
設\(\displaystyle D(x,y)\),有\(\displaystyle \overline{AD}^2=16\overline{DE}^2\)
\(\displaystyle \Rightarrow x^2+(y-16)^2=16[x^2+(y-1)^2]\)
\(\displaystyle \Rightarrow x^2+y^2=16\) 符合題目給的圓軌跡
所以圓上任一D點滿足
\(\displaystyle \overline{AD}:\overline{DE}=4:1 \Rightarrow \frac{1}{4}\overline{AD}=\overline{DE}\)

之後就有最一開始Peter老師的寫法
所求為
\(\displaystyle \frac{1}{4}\overline{AD}+\overline{BD}=\overline{BD}+\overline{DE}\geq\overline{BE}=\sqrt{26}\)

[ 本帖最後由 satsuki931000 於 2022-10-9 13:46 編輯 ]

TOP

想請教各位老師填充8、9,謝謝!

TOP

回復 26# lisa2lisa02 的帖子

第 9 題
把質數由小到大依序排列,第 14 個是 43,第 15 個是 47
若取 1 和前 14 個質數的平方,則這 15 個數兩兩互質且其中無質數

接著證明,從正整數 1 ~ 2022 中任取 16 個兩兩互質的數,則此 16 個數中,必至少有一個質數

假設這 16 個兩兩互質的數中,沒有質數

(1) 這 16 個兩兩互質的數中有 1
若剩下的 15 個合數,分別是 a_1 ~ a_15,且其最小的質因數分別是 p_1 ~ p_15
其中 p_1 < p_2 < ... < p_15
由於 a_1 ~ a_15 互質
a_15 ≧ 47^2 = 2209,不合

(2) 這 16 個兩兩互質的數中沒有 1
證明同 (1)

故從正整數 1 ~ 2022 中任取 16 個兩兩互質的數,則此 16 個數中,必至少有一個質數

[ 本帖最後由 thepiano 於 2022-4-23 14:02 編輯 ]

TOP

回復 26# lisa2lisa02 的帖子

填充八

[ 本帖最後由 PDEMAN 於 2022-4-19 17:33 編輯 ]

附件

69290.jpg (306.64 KB)

2022-4-19 17:33

69290.jpg

TOP

謝謝老師們的回覆!

TOP

回復 30# anyway13 的帖子

目前看起來,您的F點坐標應該是(1,0,1)

TOP

發新話題