43 12345
發新話題
打印

106高雄女中(相同主題合併討論)

本主題由 weiye 於 2017-4-30 23:39 合併
推到噗浪
推到臉書

回復 40# litlesweetx 的帖子

請參閱

[ 本帖最後由 eyeready 於 2017-5-20 09:15 編輯 ]

附件

image.jpg (703 KB)

2017-5-20 09:15

image.jpg

TOP

11. 凸四邊形 ABCD 對角線相交於 M 點 (彼此不垂直),P,Q 分別為 △AMD,△BMC 的重心,R,S 分別為 △CMD,△AMB 的垂心。試證明 PQ ⊥ RS。

另證: 利用向量內積證明垂直 -- 以 M 點為媒介。

借用 38#  thepiano 老師的圖 (先致謝),以下所述皆指 "向量"。

PQ = MQ - MP = (1/3)*(MB + MC - MA - MD) = (1/3)*(AB + DC)

RS = MS - MR

以下欲證 PQ.RS = 0

⇐ (AB + DC).(MS - MR) = 0

⇐ DC.MS = AB.MR

∵ DC 與 MS 的夾角 = AB 與 MR 的夾角,且 |DC|*|MS| = |DC|*|AB|*|cot∠AMB| = |AB|*|MR|

∴ 待證結果成立

TOP

12. 四面體 OABC,其中 OA = 3,OB = 4,OC = 5,∠AOB = 45˚,∠AOC = 45˚,∠BOC = 60˚,求四面體體積。


另解: 借用 40# eyeready 老師的圖 (先致謝)

無論欲用 "底面積-高" 或 "向量內外積公式" 求體積,只要求出 OA 與 △OBC 的夾角 θ (圖中的∠AOH) 就簡明了。

利用 cosθ * cos30˚ = cos45˚  (註)

⇒ cosθ = √2 /√3

利用 底面積-高 或 向量公式,所求 = (OA *OB *OC *sin60˚ *sinθ) /6 = 5


註: 當 (A,O,H 所在平面) ⊥ (C,O,H 所在平面) 時成立,式中角度皆銳角時,易由三垂線定理體會。

TOP

 43 12345
發新話題