一、填空題
4.
同時擲兩粒公正骰子,求點數和為 5 比點數和為 7 先出現的機率為何?
投擲兩個6面的公正骰子,求其點數和為4會出現在點數和為7之前的機率為
(A)\(\displaystyle \frac{1}{2}\) (B)\(\displaystyle \frac{1}{3}\) (C)\(\displaystyle \frac{1}{4}\) (D)\(\displaystyle \frac{2}{3}\) (E)\(\displaystyle \frac{3}{4}\)
(99桃園新進教師聯招,連結有解答
https://math.pro/db/viewthread.php?tid=949&page=1#pid2133)
https://math.pro/db/thread-2228-1-2.html
5.
設\(P\)是正方形\(ABCD\)內部一點,且\(P\)到\(A\)、\(B\)、\(C\)三頂點的距離分別為1、2、3,求此正方形的面積。
連結有解答
https://math.pro/db/viewthread.php?tid=1152&page=4#pid4973
6.
\(\displaystyle f(x)=\sqrt{4-3x}+\sqrt{2x-1},\frac{1}{2}\le x \le \frac{4}{3}\),當\(x=\alpha\)時,\(f(x)\)有最大值\(M\),求數對\((\alpha,M)=\)
。
(我的教甄準備之路 兩根號的極值問題,
https://math.pro/db/viewthread.php?tid=661&page=3#pid22174)
二、計算證明題
1.
若數列\(\langle\;a_n\rangle\;\)滿足\(\cases{a_1=1\cr a_{n+1}=3a_n+1,n\in N}\)
(1)試求\(a_n\)的一般式 (2)證明\(\displaystyle \sum_{k=1}^{n}\frac{1}{a_k}<\frac{3}{2}\)
我的教甄準備之路 求數列一般項,
https://math.pro/db/viewthread.php?tid=661&page=3#pid9507